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Abstract

Existing displays have a number of limitations, which make it difficult to realistically

reproduce real-world appearance; discrete pixels are used to represent images, which

are refreshed only a limited number of times per second, the output luminance range is

much smaller than in the real world, and only two dimensions are available to reproduce

a three-dimensional scene.

While in some cases technology advanced and higher frame rates, higher resolution,

higher luminance, and even disparity-based stereo is possible, these solutions are often

costly and, further, it is challenging to produce adequate content.

On the other hand, the human visual system has certain limitations itself, such as

the density of photoreceptors, imperfections in the eye optics, or the limited ability

to discern high-frequency information. The methods presented in this dissertation

show that taking these properties into account can improve the efficiency and perceived

quality of displayed imagery. More precisely, those techniques make use of perceptual

effects, which are not measurable physically, that will allow us to overcome the physical

limitations of display devices in order to enhance apparent image qualities.
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Kurzfassung

Aktuelle Anzeigegeräte haben eine Reihe von Einschränkungen, die die wirklichkeits-

nahe Abbildung der realen Welt begrenzen. Sie verwenden diskrete Pixel, um ein Bild

das mehrmals pro Sekunde aktualisiert wird darzustellen. Weiterhin sind der Kontrast

und die Leuchtkraft des dargestellten Bildes viel niedriger als das, was der Mensch in

der realen Welt wahrnehmen kann und es sind nur zwei Dimensionen verfügbar, um

eine dreidimensionale Szene zu simulieren.

Während in einigen Bereichen, durch technologische Fortschritte, höhere Bild-

wiederholungsraten, höhere Auflösungen, höhere Leuchtkraft und sogar disparitäts-

basiertes Stereo möglich wurden, sind diese Lösungen oft kostspielig und es bleibt

schwierig Inhalte zu produzieren, welche die technischen Gegebenheiten am besten

ausnutzen.

Andererseits ist auch das visuelle System des Menschen Einschränkungen un-

terworfen: z.B. der endlichen Dichte der Photorezeptoren, und der Imperfektion des

Auges, oder die begrenzte Fähigkeit, hochfrequente Informationen zu erkennen. Die in

dieser Dissertation vorgestellten Techniken zeigen, dass, wenn diese Erkenntnisse in

der Bildsynthese genutzt werden, sowohl die Effizienz als auch die wahrgenommene

Qualität der angezeigten Bilder verbessert werden kann. Die Methoden, welche in

dieser Dissertation vorgestellt werden, nutzen unterschiedliche Wahrnehmungseffekte,

welche physikalisch nicht messbar sind, aber Einfluss auf die Wahrnehmung haben.

Dadurch wird es möglich, physische Einschränkungen von Anzeigegeräten zu umgehen

und die Bildqualität substantiell zu verbessern.
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Summary

The continuous need for better image quality forces display manufactures to unceas-

ingly improve contrast, brightness, color and spatial as well as temporal resolution.

Although the design of these devices already accounts, in many cases, for limitations

of the human visual system (HVS), such as luminance adaptation, density of photore-

ceptors in the retina, imperfections in the eye optics or disability of discriminating

high-frequency temporal light fluctuations, they are still not able to reproduce an

appearance that we are used to from looking at the real world. The task of realistic

image reproduction on display devices is getting even more difficult in the presence of

new display technology. For example, the quickly-developing 3D technology, displays

stereo images on flat screens. This may lead to a conflict between eye vergence and

accommodation which are strongly coupled. Also “frozen in time” discrete frames

(e. g., for LCD display) may result in perceived blur due to the fact that eyes track

objects moving on the screen in a continuous way while the content is presented to the

viewer as a sequence of static images that are displayed for an extended period of time.

In this dissertation, we propose several methods that rather refer to perceptual ef-

fects than to physical effects, which means that we can experience but not measure them

physically. In particular, we are aiming at the exploitation of perceptual effects to help

overcome physical limitations of display devices in order to enhance apparent image

qualities. To this end, we present perceptually-motivated temporal upsampling which,

by exploiting the temporal integration of the HVS, reduces the so-called hold-type

blur for computer generated content in an efficient way. We also show that temporal

integration can be successfully used in the context of apparent resolution enhancement.

Those two techniques allow for better retargeting of the presented content between

devices of different temporal or spatial resolution. Such retargeting has become even

more crucial in the context of 3D stereo technology. In this dissertation we show that

taking human perception can improve perceived quality and even overcome certain

limitations of current 3D display technology.This is achieved by developing perceptual

models for disparity along with a number of disparity manipulation techniques. These

methods, besides improving stereo content, can be applied at interactive rates which

is enabled by our technique for efficient stereo-image creation. This technique can

produce regular stereo images based only on one available view. All the here-presented

techniques are evaluated via psychophysical experiments, which show the significant

advantages when our techniques are used. In the following paragraphs we shortly

summarize our methods.

Perceptually-motivated Real-time Temporal Upsampling of 3D Content for
High-refresh-rate Displays

High-refresh-rate displays (e. g., 120 Hz) have recently become available on the con-

sumer market and quickly gain on popularity. One of their aims is to reduce the

perceived blur created by moving objects that are tracked by the human eye. However,

an improvement is only achieved if the video stream is produced at the same high

refresh rate (i. e., 120 Hz). Some devices, such as LCD TVs, solve this problem by

converting low-refresh-rate content (i. e., 50 Hz PAL) into a higher temporal resolution
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(i. e., 200 Hz) based on two-dimensional optical flow. In our approach, we show

how rendered three-dimensional images produced by recent graphics hardware can be

upsampled more efficiently, which results at the same time in a higher quality. Our

algorithm relies on several perceptual findings and preserves the naturalness of the

original sequence.

Apparent Display Resolution Enhancement for Moving Images

The limited spatial resolution of current displays makes the depiction of very fine

spatial details difficult. We propose a novel method applied to moving images that

takes the HVS into account and leads to an improved perception of such details. To

this end, we display images rapidly varying over time along a given trajectory on a

high-refresh-rate display. Due to the retinal integration time the information is fused

and yields apparent super-resolution pixels on a conventional-resolution display. We

discuss how to find optimal temporal pixel variations based on linear eye-movement

and image content and extend our solution to arbitrary trajectories. This step involves

an efficient method to predict and successfully treat potentially visible flickering.

Perceptual Models for Disparity

Binocular disparity is an important cue for the human visual system to recognize spatial

layout, both in reality and simulated virtual worlds. In this dissertation we introduce

a perceptual model of disparity that is used to predict the human response related to

complex stereo images. Such a model has a number of applications. It allows us to

define a metric to compare a stereo image to an alternative stereo image and to estimate

the magnitude of the perceived disparity change. It can also be used to assess the effect

of disparity in order to control the level of undesirable distortions or enhancements

(introduced on purpose). Besides the prediction of perceived differences, other applica-

tions include compression, and re-targeting. We also present novel applications in form

of disparity optimization, hybrid stereo images and backward-compatible stereo. The

latter minimizes disparity in order to convey a stereo impression if special equipment

is used but it produces images that appear almost ordinary to the naked eye. This

is achieved by exploiting the Craik-O’Brien-Cornsweet illusion, which, when used

skillfully, can enhance depth perception. We also present a technique, which predicts

the HVS response to a disparity signal while accounting for an underlying luminance

pattern. This is the first technique that is able to capture this interaction. Accounting

for luminance while processing disparity extends the list of possible applications of the

disparity model to joint luminance-disparity manipulation or a disparity optimization

for multi-view autostereoscopic display.

Adaptive Image-space Stereo View Synthesis

Stereo vision is becoming increasingly popular in feature films, visualization and

interactive applications such as computer games. However, computation costs are

doubled when rendering an individual image for each eye. Our technique allows us to

generate two individual images for the left and right eye using an image-based method

which uses only single image, together with a depth map as an input. The resulting

method computes a high-quality stereo pair for roughly half the cost when compared
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to the traditional method. We achieve this result via an adaptive-grid warping that also

involves information from previous frames in order to avoid artifacts.





Zusammenfassung

Der ständige Bedarf an besserer Bildqualität führt dazu, dass Kontrast, Helligkeit, Far-

be, sowie räumliche und zeitliche Auflösung von Bildschirmen, andauernd verbessert

werden. Obwohl das Design von neuen Geräten bereits vielfach die Einschränkungen

des menschlichen visuellen Systems berücksichtigt (wie die Dichte der Photorezep-

toren in der Netzhaut, Unvollkommenheiten in der Augenoptik oder Wahrnehmungs-

einschränkungen von hochfrequenten Informationen in Zeit und Raum), sind Hersteller

noch nicht in der Lage, das Aussehen der realen Welt exakt zu reproduzieren. Rea-

listische Bildwiedergabe wird sogar zunehmend schwieriger für einige der neueren

Bildschirmtechnologien. Zum Beispiel werden für die 3D-Visualisierung Stereobilder

auf Flachbildschirmen präsentiert. Dies kann z.B. zu einem Konflikt zwischen der

Augenvergenz und Akkommodation, welche beide stark miteinander gekoppelt sind,

führen. Auch Bilder, die “in der Zeit eingefroren” dargestellt werden (z.B. für LCD-

Displays) können in Unschärfe resultieren, da dass Auge Objekte auf dem Bildschirm

kontinuierlich verfolgt, während in Wirklichkeit eine Sequenz an statischen Bildern

präsentiert wird.

In dieser Arbeit schlagen wir mehrere Methoden vor, die auf Wahrnehmungs-

effekten, welche sichtbar, aber nicht physikalisch messbar sind, beruhen. Insbesondere

sind wir an der Ausnutzung dieser Wahrnehmungseffekten interessiert, um die physi-

kalischen Grenzen von Anzeigegeräten zu überschreiten und damit eine Verbesserung

der “wahrgenommenen” Bildqualität zu erzielen. Zu diesem Zweck stellen wir ein

perzeptuelles temporales Upsampling vor, welches die zeitliche Integration der mensch-

lichen visuellen Wahrnehmung ausnutzt, um die sogenannte “Hold-Typ Unschärfe”

von computergenerierten Inhalten zu reduzieren. Wir zeigen auch, dass durch die

zeitliche Integration auch die “wahrgenommene” physikalische Bildauflösung “virtuell”

erhöht werden kann. Diese Techniken erlauben eine bessere übertragung von Inhal-

ten zwischen verschiedenen Geräten mit unterschiedlicher zeitlicher oder räumlicher

Auflösung, was insbesondere für die 3D Stereotechnologie wichtig ist. In dieser Dok-

torarbeit wird gezeigt, dass, unter Berücksichtigung der menschlichen Wahrnehmung,

Verbesserungen der wahrgenommenen Qualität, sowie das überwinden bestimmter

Einschränkungen von aktuellen 3D Displaytechnologien möglich wird. Wir erreichen

dieses Ergebnis durch die Entwicklung von Wahrnehmungsmodellen und einer Reihe

von Techniken zur Manipulation von Stereo-Disparität. Neben der Verbesserung von

Stereoinhalten, untersuchen wir auch die effiziente Erzeugung von Stereobildern in

Echtzeit. Diese Technik kann Stereobilder aus nur einem einzigen zur Verfügung stehen-

den Bild erzeugen. Alle hier vorgestellten Verfahren werden mittels psychophysischer

Experimente ausgewertet, und wir illustrieren darin die deutlichen Vorteile unserer

Techniken. In den folgenden Abschnitten werden wir diese kurz zusammenfassen.

Wahrnehmungsbasiertes Echtzeit-Upsampling von 3D Inhalten für
Hochfrequenzbildschirme

Hochfrequenzbildschirme (z.B. 120 Hz) sind seit kurzem weit verbreitet und gewinnen

zunehmend an Popularität. Eines der Ziele dieser Arbeit ist es, die wahrgenommene

Unschärfe von bewegten Objekten zu reduzieren. Allerdings kann eine Verbesserung
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nur erreicht werden, wenn der Video-Stream mit einer hohen Aktualisierungsrate

produziert wird (120 Hz). Einige Geräte, wie zum Beispiel LCD-TVs, lösen dieses

Problem durch die Umwandlung von wenigen Eingangsbildern (z.B. 50 Hz PAL) in

eine höhere Bildfrequenzrate (z.B. 200 Hz) durch die Berechnung von zweidimensiona-

lem optischen Fluss. In unserem Ansatz zeigen wir, wie synthetische dreidimensionale

Bilder, unter Benutzung moderner Hardware, effizienter in eine qualitativ hochwertige

Sequenz umgewandelt werden können. Unser Algorithmus basiert auf verschiedenen

Wahrnehmungsbefunden und bewahrt die Natürlichkeit der ursprünglichen Sequenz.

Scheinbare Auflösungserhöhung für bewegte Bilder

Die begrenzte Bildauflösung aktueller Bildschirme macht die Darstellung sehr feiner

Details schwierig. Wir schlagen eine neue Methode vor, die für bewegte Bilder, unter

Berücksichtigung des menschlichen visuellen Systems, zu einer verbesserten Wahrneh-

mung solcher Details führt. Zu diesem Zweck zeigen wir Bilder mit zeitlich schnell

variierenden Inhalten entlang einer vorgegebenen Strecke auf einem Bildschirm mit ho-

her Bildwiederholrate. Aufgrund der zeitlichen Integration des so erzeugten Signals auf

der Netzhaut, werden die Informationen verbunden und ein hochauflösendes Ergebnis

auf einem niedrig aufgelösten Bildschirm erreicht. Wir zeigen, wie man die optimale

zeitliche Variation von Pixeln, abgestimmt auf eine lineare Augenbewegung, bestimmt

und erweitern danach unsere Lösung, auf beliebige Augenbewegungen. Dieser Schritt

beinhaltet eine effiziente Methode zum Vorhersagen und Vermeidung von potenziell

sichtbarem Flickern.

Perzeptuelle Modelle für Stereo-Disparität

Binokulare Disparität ist ein wichtiger Reiz, den das visuelle System des Menschen

verarbeitet, um die räumliche Anordnung in der Realität, wie auch in der simulierten

Welt, zu verstehen. In dieser Dissertation stellen wir Wahrnehmungsmodelle vor, die

verwendet werden, um die menschliche Antwort auf komplexe Stereobilder vorherzusa-

gen. Solche Modelle verfügen über eine Reihe von Anwendungen. So ist z.B. möglich,

eine Metrik zu definieren, um ein Stereobild mit einem alternativem Stereobild zu

vergleichen und die Größe der wahrgenommenen Unterschiede abzuschätzen. Die

Metrik kann auch verwendet werden, um die Wirkung des Unterschieds zu bewerten

und unerwünschte Veränderungen (eventuell zu einem gewissen Grad absichtlich hin-

zugefügt) zu messen und zu steuern. Andere Anwendungen sind ebenfalls möglich,

z. B. Komprimierung und kontrollierte Übertragungen zwischen Geräten. Außerdem

präsentieren wir neue Anwendungen in Form von Disparitätsoptimierung, hybriden

Stereobildern und rückwärts-kompatiblem Stereo. Letzteres minimiert die Disparität,

so dass Bilder fast gewöhnlich erscheinen, wenn man sie mit bloßem Auge betrach-

tet, aber einen Stereoeindruck vermitteln, falls spezielle Ausrüstung verwendet wird.

Dies wird durch die Ausnutzung der Craik-O’Brien-Cornsweet Illusion erreicht, die,

geschickt eingesetzt, die Tiefenwahrnehmung erhöhen kann. Außerdem stellen wir

eine Technik vor, die die menschliche Reaktion auf ein Disparitätssignal unter Berück-

sichtigung des zugrundeliegenden Farbmusters vorhersagt. Dies ist die erste Technik,

welche in der Lage ist, solche Wechselwirkungen zu erfassen. Die Berücksichtigung der

Leuchtkraft liefert eine Vielfalt an neuen Anwendungen für unser Disparitätsmodell,

wie z.B. Bildmanipulation, oder die Optimierung für autostereoskopische Bildschirme.
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Adaptive Bild-Raum-Stereo-Ansicht Synthese

Stereo Vision wird immer beliebter in Spielfilmen, bei der Visualisierung von Daten

und für interaktive Anwendungen wie Computerspiele. Allerdings verdoppelt sich der

Aufwand der Bildsynthese, da jeweils ein Bild pro Auge erzeugt werden muss. Unsere

Technik ermöglicht das Erstellen von zwei einzelnen Bildern (für das linke und das

rechte Auge) durch ein bildbasiertes Verfahren, welches nur ein einzelnes Eingabebild

(inklusive Tiefenbild) verwendet. Die resultierende Methode reduziert somit die Kosten

für ein hochwertiges Stereo-Bildpaar, im Vergleich mit traditionellen Methoden, auf

in etwa die Hälfte. Wir erreichen dieses Ergebnis durch ein adaptives Gitter, welches

die Inhalte verformt. Desweiteren nutzen wir auch Informationen aus vorhergehenden

Bildern, um Artefakte zu vermeiden.
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1
Introduction

This dissertation is inspired by the existing gap between capabilities of current display

devices and the richness of the real world. Although continuous development is being

made by display manufacturers, we are still far from being able to faithfully reproduce

the real world on a screen. This is mostly due to the high cost and physical limitations

of the display designs as well as different viewing condition. We propose several

techniques that, instead of designing new and better hardware, rely on properties of the

human visual system. Considering perception enabled us to improve the quality of the

perceived content. Surprisingly, our methods allow to improve the quality of images

even beyond physical capabilities of the display devices.

This chapter provides a detailed motivation as well as a description of our novel

contributions. We also describe the organization of this dissertation.

1.1 Motivation

Existing display devices introduce a number of physical constraints, which make

it difficult to realistically reproduce real-world appearance. For example, a direct

reproduction of the luminance range of a moonless night to the intensity of the sun

is technically out of reach. Similarly, the continuous nature of spatial and temporal

information does not directly match the discrete notions of pixels and frames per

second.

The human visual system (HVS) has its own limitations, which to a certain extent

reduce the requirements imposed on display devices. For example, through a luminance-

adaptation process (that can be extended in time) our eyes can operate both in dark-

night and sunny-day conditions, however, simultaneously only 4–5 log-10 units of

luminance dynamic range can be perceived at once. Similarly, the limited density of

photoreceptors in the retina (in the foveal region the size of cones amounts to 28 arcsec)

as well as imperfections in the eye optics limit the spatial resolution of details that can

be perceived. In the temporal domain the critical flickering frequency (CFF) limits the

ability to discern temporal signals over 60 Hz.

All such HVS-imposed limitations are taken into account, when designing display

devices, but still a significant deficit of reproducible contrast, brightness, and spatial

pixel resolution can be observed, which fall short with respect to the HVS capabilities.

Moreover, unfortunate interactions between technological and biological aspects lead

to new problems, which are non-existing in real-world observation conditions. For

example, the conflict between the eye accommodation adjusted to the display screen

1



2 CHAPTER 1. INTRODUCTION

and the eye-ball vergence driven by depth (disparity) reproduced on 3D stereo displays.

This mismatch imposes limitations on the depth range that can be comfortably observed.

Also, “frozen in time” discrete frames (e.g., for LCD displays) result in perceptual

issues. While the entire sequence might appear smoothly animated, each frame is

actually static for an extended period of time. When the eye tracks dynamic objects (to

keep their steady projection in the fovea), the static image is traversed smoothly and

values crossed by the eye start to integrate on the retina, which results in a perceived

hold-type blur. Note that such blur does not exist in the physical space (i.e., in displayed

images) but it is a purely perceptual effect. Nonetheless, hold-type blur can degrade

the impression of perceived image quality in a similar way as physical blur introduced

to images.

Even though hardware is constantly evolving such limitations still persist. In order

to surmount the physical limitations of display devices, modern algorithms started

to exploit characteristics of the human visual system (HVS) such as apparent image

contrast [Purves, Shimpi and Lotto 1999] based on the Cornsweet Illusion or apparent

brightness [Zavagno and Caputo 2001] due to glare. Inspired by those methods, we

rather refer in our work to the perceptual effects, which we can only experience but not

measure physically, than to physical effects. In particular, we exploit perceptual effects

to help overcome physical limitations of display devices in order to enhance apparent

image qualities.

In this dissertation, we want to argue that quality consideration need to take human

perception into account, in order to take full advantages of new display designs.

1.2 Novel contributions

This dissertation is inspired by the fact that by exploiting human visual perception,

perceived quality of content shown on a screen can be significantly improved. We do

not achieve our goal by improving existing hardware or designing a new one, which

is a common approach used by the industry. Instead, we rely on skillfully designed

software techniques that are based on properties of the human visual system. Therefore,

techniques presented in this dissertation arise from well-studied findings in the field of

human perception.

By analogy to computational photography, all techniques that involve additional

processing to extend or enhance the capabilities of display devices are called computa-
tional display. Our methods achieve such goals by taking the advantage of certain HVS

properties, therefore, we refer to them as perceptual display which forms a subgroup

of computational display techniques.

The ideas described in this dissertation have already been published in international

journals and presented at various conferences. Overviews of our techniques have also

been included in a book chapter [Didyk et al., 2012a] as well as SIGGRAPH Asia and

Eurographics courses [Banterle et al. 2011; Banterle et al. 2012]. Here, we present an

extended description of our techniques under the common concept of improving image

quality by exploiting properties of the human visual system. Our main contributions

can be summarized as follows:
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• Perceptually-motivated temporal upsampling
We propose a temporal upsampling scheme, tailored towards the requirements

of high-refresh-rate hold-type displays and the capabilities for modern graphics

hardware at the same time. We exploit the information on depth, occlusion and

three-dimensional structure, made available via the GPU as well as perceptual

findings to outperform pure image-based upsampling. We diversify subsequent

frames in terms of spatial-frequency content to make use of image-fusion char-

acteristics in the HVS. The required steps are simple, do not introduce any lag

in the video stream and can extrapolate one or even multiple frames. We show

in a psychophysical study that the appearance of the final animation produced

by our technique matches 120 Hz sequences closely and outperforms sequences

with lower framerate. Similar findings are obtained when considering task per-

formance. The advantages of our technique make it a cheap and more-suited

alternative to producing 120 Hz content directly. [Didyk et al., 2010b]

• Apparent display resolution enhancement
Here, we turn the temporal integration of the HVS, which normally leads to

perceived blur in standard displays, to our advantage and propose a novel tech-

nique, which shows that by taking the temporal eye integration into account,

we can optimize the presented images, such that the perceived resolution is

enhanced. This allows us to create the impression of looking at images whose

resolution is higher than the physical resolution of a screen. The basic idea of

this method is to show slightly different information in consecutive frames and

to let the HVS fuse it. To this end, we propose an apparent-resolution model

for moving images and show a method for optimal subimages derivation. A

temporally-varying signal can in some cases produce visible flickering. To avoid

such artifacts we also developed an efficient technique that reduces this effect but

still improves resolution. We validate our resolution-enhancement technique in a

perceptual study, which shows that significant improvements can be achieved,

both, for computer-generated images and photographs. [Didyk et al., 2010a],

[Didyk et al., 2011a]

• A perceptual model for stereo 3D disparity
We introduce a first disparity model for 3D stereo content that can quantify the

perceived depth. In order to build such a model, we first conduct an experi-

ment where we measure the performance of the HVS in discriminating depth

differences and later propose a computational framework that allows processing

complex images. We show that our model has a number of applications such

as perceived disparity metric, depth signal compression or perceptually-based

retargeting of stereo content. Based on our model, we also present a novel

backward-compatible stereo technique, which minimizes disparity in order to

convey a stereo impression when adequate equipment is used but produces im-

ages that appear almost ordinary to the naked eye. This is achieved by using a

perceptual effect called Cornsweet Illusion, which is known from luminance per-

ception but can also be used for depth. [Didyk et al., 2011b], [Didyk et al., 2012b],

[Didyk et al., 2012c]

• A luminance-contrast-aware stereo 3D disparity model
Disparity perception is also affected by the underlying luminance pattern. In

many cases, when the luminance pattern does not exhibit certain properties, even
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a strong disparity signal does not create a good depth impression. In order to cap-

ture this behavior, we perform measurements of perceived disparity changes for

stimuli with different luminance and disparity patterns and propose a disparity-

perception model accounting for RGB image content, which is the first to allow

for a joint luminance and disparity handling. This model, besides improving

previous applications, enables new ones, such as joint luminance-disparity manip-

ulation or optimization of content for multi-view auto-stereoscopic display. Our

results as well as the importance of taking luminance pattern into account while

processing a disparity signal are validated in a user study. [Didyk et al., 2012d]

• Adaptive image-space stereo view synthesis
All techniques for 3D stereo content manipulations, which are proposed in our

work, can run at interactive rates. This requires a challenging step which is an

efficient resynthesis of stereo image pairs after disparity manipulation. Here,

we present a method that allows the transformation of a stream of monocular

images with depth information into a stream of stereo image pairs, by exploiting

modern GPUs and human perception. The reconstruction of a stereo image pair

requires only a couple of milliseconds. We achieved this result by extending the

grid-based approach of our temporal upsampling techniques coupled with an

interleaving technique to render the left and right view depending on the camera

path. [Didyk et al., 2010c]

1.3 Dissertation organization

This dissertation is structured as follows. In the following, Chapter 2 describes the

perceptual background, where we present properties of the HVS that are later exploit

in our techniques. Next, in Chapter 3, we give an overview of related previous work. In

Chapter 4, we present a solution for reducing blur in LCD displays. The here-presented

technique shows how high-quality frames can be interleaved with low-quality frames,

and lead to an overall improvement of the appearance. Afterwards, in Chapter 5,

we demonstrate how the high quality of all frames can improve apparent spatial

resolution. In Chapter 6, we show the role of perception in the context of stereovision

and accommodation/vergence-conflict reduction by presenting two perceptual models

for disparity. This chapter is followed by Chapter 7, where we present a number of

perceptually-motivated disparity manipulations that take advantage of the disparity

models. In Chapter 8, we describe our image-based technique for stereo view synthesis

which enables all our disparity manipulation techniques to perform at interactive rates.

Finally, we conclude and give indications for future work in Chapter 9.
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Background

All techniques presented in this dissertation exploit certain properties of the human

visual system. This chapter provides an overview of the properties as well as limitations

of the HVS in the context of current display technologies. More precisely, we are

interested in quality limits coming from both, the HVS as well as the display technology

side. Such analysis provides a better overview and understanding of current challenges

as well as identifies room for possible improvements. We start in Section 2.1 with

discussion of spatial resolution limits imposed by HVS as well as display technology.

Next, in Section 2.2, we give an overview of the HVS properties related to temporal

resolution which are also discussed in the context of current displays. The last part

(Section 2.3) provides a basis for depth perception, including the limits of HVS for

perceiving depth as well as the viewing comfort aspect in 3D displays.

2.1 Spatial Resolution Limits

Human capabilities of perceiving high spatial frequencies are crucial in everyday live.

Besides reading text or distinguishing small details, they also enable discrimination

and identification of objects that are far away. This is important from a survival

point of view and has been developed through the human evolution process. The

daily experience of highly detailed real word encourage engineers to design not only

devices which are capable of capturing this richness but also devices that can faithfully

reproduce the unlimited details of the real world.

2.1.1 Physical Limitations

The main limitations of spatial acuity of the HVS come from the way the light coming

to our eyes is processed. It first goes through the cornea and anterior chamber to later

reeve the pupil. Next, the light passes through the lens and eye’s interior to be at the end

projected on the retina (Figure 2.1). At this moment the visual acuity is limited by blur

caused by the diffraction in the pupil in bright viewing conditions and imperfections

of optics in the lens and cornea at low light intensities, when the diameter pupil is

much larger [Wandell 1995, p. 37]. Next, located on the retina photoreceptors are

stimulated by the projected light, which after conversion to a signal, is transmitted

further via nerve fibers for later processing in the brain. Although the visual acuity is

here limited by the density of photoreceptors, it turns out that the eye’s optical low-pass

5



6 CHAPTER 2. BACKGROUND
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Figure 2.1: Before light that comes to the eye is turned into a signal transported to

brain, it goes through different eye components which affect the signal quality.

10

Figure 2.2: Optical sections of foveal cones mosaic for three subjects [Cur-

cio et al. 1990]. The red grid illustrates an estimated pixel grid of 22-inches full-HD

display viewed from 50 cm distance projected on the retina.

filtering perfectly matches the foveal photoreceptor density. This way spatial aliasing

is avoided.

The limit of the spacial acuity is determined by the smallest anatomic spacing

between cones in the fovea. For the average observer it is estimated to be 28" (arc

seconds) [Curcio et al., 1990] which, according to the Nyquist’s theorem, enables an

observer to distinguish 1D sine gratings of roughly 60 cycles/deg resolution. However, as

shown in Figure 2.2, the cone spacing varies across subjects. For some of them spatial

acuity, which is estimated based on cones density, exceeds even 80 cycles/deg.

2.1.2 Hyperacuity

The story, however, does not end here. Interestingly, the HVS is still able to interpolate

a feature position with an accuracy higher than 20 % of the distance between cones

in the fovea. Current studies showed so far that this works when the position of one

image element is located relative to another, e. g., slightly shifted lines in the vernier

acuity task [Wandell 1995, p. 239]. This suggests that it is more a localization than a

resolution task (Figure 2.3). However, it shows that physical limitations of the eye may

be compensated to a certain extend by other mechanisms which enhance perceived

resolution.
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Figure 2.3: Resolution: Two dots (top) projected on the retina can be resolved only if

the separation between them leaves space for at least one more active photoreceptor.

Otherwise, the patter will be indistinguishable from one elongated dot. Hyperacuity:

Two objects (bottom) can be relatively localized using information from many pho-

toreceptors, which enables estimating center of each object with accuracy below cones

spacing.

2.1.3 Display Limitations

When discussing HVS capabilities in resolving spatial details it is interesting to confront

them with the quality reproducible using current display devices [Deering 2005].

Assuming a pixel size of a typical full-HD desktop display, such as a 120 Hz Sam-

sung SyncMaster 2233 and 50 cm distance from an observer to the screen, the pixel area

amounts to roughly 1.5’ (arc minutes of visual angle). Comparing it to the estimated

density of photorespetors as 28”, this means that for average observer 1 pixel covers

roughly 9 cones (Figure 2.2). Similar results can be obtained when we compute the

density of pixels projected on the center of human retina. According to Wandell [1995],

it is around 17,000 px/mm2. At the same time it has been shown [Curcio et al. 1990], that

the center of the retina, which covers 1 deg of viewing angle, contains from 80,000 to

200,000 cones/mm2. Note that those estimates are valid only for the central fovea region.

The cone density drops quickly with the eccentricity [Curcio et al., 1990] (Figure 2.4),

however, we need to remember that while building overall quality impression this

region is most crucial.

Those calculations account only for the standard situation of viewing a computer

monitor. However, in many situations an observer might actually be closer to the

screen, as this is the case for hand-held devices, big screens or tiled displays [VisBox,

Inc.]. In such situations the number of photoreceptors corresponding to one pixel

can be significantly higher. This observation resulted in a current trend in display

design which aims producing displays with resolution matching the resolution of

photoreceptors on the retina. Steps in this direction have been made by Apple which
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Figure 2.4: Cones density measured for seven subjects as a function of the distance

from the center of fovea (Redrawn from [Curcio et al. 1990]).

designed “Retina” display or Sharp who has recently presented 85-inches display

which offers 8K resolution. However, such screens, especially those whose size allows

using them for home cinema applications, are still extremely expensive.

2.2 Temporal Perception

Although described so far aspects are important while analyzing limits of the human

visual system, they assume perfect stabilization of an image on the retina as well as

constancy of the image presented to the observer. Those conditions, however, are

almost never fulfilled in reality as objects in the real world are usually in motion. Also

the observer, in order to gain as much information as possible, usually does not look at

one point for extended period of time but rather changes the point of interest constantly

via fast saccades or stabilize the image of moving objects via tracking. Crucial in

this context is also the fact that the way images are registered by our vision system is

similar to a time–averaging sensor. This together with omnipresent motion has a huge

influence on perceived images in reality but even bigger in the case of display devices

which show images in a discrete rather than continuous way.

2.2.1 Temporal Integration and Flickering

Similarly to limitations in spatial resolution, the human visual system is limited in

perceiving high frequencies of temporal light fluctuations. This is due to the fact that

the response of photoreceptors on our retina is not instantaneous [van Hateren, 2005].

Also higher-level vision processing further lowers the sensitivity of the human visual

system to time-varying patterns. To the point where the HVS stops discriminating

temporal fluctuations it starts averaging upcoming signal over time.

One of the basic findings from temporal integration is Bloch’s law [Gorea and

Tyler 1986]. It states that the detectability of stimuli with similar spatial characteristics
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depends solely on their energy, i. e., the product of luminance and exposure time. In

practice it means that the perceived luminance of the signal presented over a given

period of time is the same as if the duration time of this signal was halved but the

intensity was doubled. It is often assumed that temporal integration of information

by the HVS follows this law. However, it is valid only up to some critical duration

(around 40± 10 ms depending on spatial frequency [Gorea and Tyler, 1986]). For

longer durations only the intensity of the signals influences the perceived brightness.

Therefore, modeling of temporal integration using Bloch’s law is limited to only

high frequency temporal fluctuations of signal. In fact, temporal averaging is much

more complicated phenomenon and for full understanding, other parameters than time

duration and energy of signal need to be taken into account.

From a practical point of view, it is however interesting to know when the HVS sees

temporarily varying signal and when the signal is interpreted as constant. Lack of the

perceived fluctuations is either due to high temporal frequency light modulation, where

Bloch’s law holds, or small amplitude of fluctuations that cannot be detected. Signal

that appears as constant is defined by critical flicker frequency (CFF) [Kalloniatis

and Luu, 2009], over which any temporal modulations are imperceptible. In such a

case presented intensities are fused and a steady appearance is reached. Flickering

perception is complex and the CFF depends on many factors such as the adaptation

luminance, spatial extent of flickering pattern (Figure 2.5), and retinal region (the fovea

or periphery) at which this pattern is projected. The CFF rises roughly linearly with the

logarithm of time-averaged background intensity (the Ferry-Porter law). The specific

CFF values for different adaptation luminance have been measured as the temporal
contrast sensitivity function [de Lange 1958] for stimuli of the spatial extent of 2◦
(angular degrees). One important observation is that the CFF is significantly reduced

for smaller stimuli [McKee and Taylor 1984; Mäkelä, Rovamo and Whitaker 1994]

and that the CFF is the highest in the fovea, except for bright adaptation conditions and

large stimuli, when flickering is better perceived at the periphery.

60 Hz

50 Hz

40 Hz

30 Hz

20 Hz

10 Hz

0 Hz
-3 -1 -1 3 5

Figure 2.5: Critical flickering frequencies as a function of size and retinal illuminance

of test stimulus [Graham 1965].
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2.2.2 Perception of Moving Images

The temporal integration nature of the HVS system has a huge influence on perceived

image quality once motion is present (e. g., moving objects or eye motion). Mismatch

between motion of objects in the scene and human eyes can lower the perceived image

quality by e. g., introducing motion blur. Surprisingly, in some cases, motion can also

improve perceived quality. Therefore, understanding how the HVS creates images

of moving objects is crucial for current display design where interaction between

continuous eye motion and spatially as well as the temporally discrete nature of screens

leads to phenomena that are not observed in the real world.

The perception of motion, where information on objects moving in a 3D world is

inferred from 2D retinal images is a complex process [Wandell 1995, Chapter 10]. One

of the most important mechanisms that allows humans a good perception of moving

objects is smooth pursuit eye motion (SPEM). This mechanism compensates for the

fact that the visual channel in the HVS specialized in precise object identification is

tuned to high spatial frequencies and low temporal frequencies (e. g., food selection),

however, it has a poor temporal response [Burr 1981]. Thus, it is crucial for the HVS

to stabilize moving objects on the retina in order to be able to recognize them and see

details. SPEM is essentially an ability of tracking objects in motion within large range

of velocities, so that its projection onto retina is centered in the fovea featuring the

highest density of photoreceptors. Through this, images are stabilized on the retina

and can be perceived as sharp, which would be impossible without this mechanism.

As confirmed in an eye tracking experiment [Laird et al. 2006] such a stabilization is

almost perfect for steady linear motion with velocities in the range of 0.625–2.5 deg/s.

The performance stays very good up to 7 deg/s.

SPEM can be also efficiently performed for images involving more complex motion

as we experience in real live or during TV or movie watching. It turns out that the

initialization of SPEM typically requires 100-120 ms as measured for a completely

random direction and velocity of the moving target [Krauzlis and Lisberger 1994]. An-

ticipatory effects and cognitive strategies as well as the presence of target on the screen

before its motion starts can reduce the initialization phase by 30 ms. For comparison,

the saccade, which is performed while scanning a visual scene, may require up to 200

ms to initialize and may last 20-200 ms [Krauzlis and Lisberger 1994] when the vision

is suppressed without any visible effect on the continuity of seeing. All these observa-

tions suggest that switching the eye pursuit between different targets can be effortlessly

and efficiently done. While the eye undergoes additional fixational eye movements,

such as tremors, drifts, and microsaccades, these are similar to static fixation, and it

is believed that the HVS suppresses their influence on perception [Martinez-Conde,

Macknik and Hubel 2004].

Although eye tracking is very efficient in many scenarios, it also has its limita-

tions [Daly, 1998]. For low angular velocities below 0.15 deg/s the drift eye movement

interferes with the smooth pursuit eye motion. Similarly, for velocities higher than

80 deg/s tracking becomes impossible.

In the next two parts of this section we show how motion can affect perceived

image quality. First, we discuss perception of blur, which is caused by the mismatch

between SPEM and motion present in the scene. Next, we present cases, where motion

can improve quality of perceived images.
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2.2.3 Perception of Blur

Image sharpness is an important factor, which decides upon perceived image quality

[Janssen, 2001]. Perceptual studies clearly indicate [Calabria and Fairchild 2003; Lin,

Gai and Kassim 2006] that people prefer images with increased contrast at edges. This

is often achieved by applying image sharpening techniques such as unsharp masking.

Not surprisingly, blur in the image is considered an artifact and is particularly annoying

when present in the regions of interest that attract visual attention such as moving

objects. Blur perception is a complex phenomenon, which is affected by characteristics

of the HVS such as temporal integration in the retina, eye motion, and visual illusions.

In the reality the most common kind of blur that our eyes see is motion blur. It

is created when retinal images of objects move relatively to the retina, which may

be caused by the actual object motion, eye motion, or both. Putting it differently, it

happens always when SPEM does not work, i. e., velocity of objects is too high to

enable good tracking or there are multiple objects in the scene with different velocities

and only one of them can be tracked. For all such objects the retinal images acquired

in such conditions is blurred, since photoreceptors in the retina integrate signal over

time by an analogy to the finite exposure time in cameras.

Blur perception becomes even more complex when we start considering a content

shown on a screen, where, due to discrete nature of display devices, moving objects are

not perfectly reproduced in terms of motion smoothness. This means that, in contrast to

reality, signal transitions at retinal photorespetors do not follow real-world observation

conditions. This has significant influence on perceived quality on today’s predominant

hold-type LCD displays. They exhibit two prominent forms of blur: response time blur

and hold-type blur [Pan, Feng and Daly 2005]. Both are not present in impulse-type
CRT displays, for which other drawbacks exist, such as flickering, lower brightness,

and reduced contrast [Klompenhouwer and Velthoven 2004].

Response time blur results from the inability of the LCD display to switch be-

tween intensity levels instantaneously, but its contribution to the overall blur is rel-

atively low. Pan et al. [2005] report that only 30 % of blur is a consequence of the

response time, even for slow, 16 ms displays. For modern displays, the response

time of 2–4 ms becomes negligible and overdrive algorithms can even lead to further

reductions [Feng 2006].

Hold-type blur is a purely perceptual effect arising from an interaction between

the HVS and hold-type displays [Pan, Feng and Daly 2005]. The blur is not physically

present in the image and cannot be measured with e. g., a high-speed camera. Hold-type

blur can be seen as the inverse of motion blur: In motion blur, the eye is fixed and an

object moves, leading to blur, while for the hold-type effect, the image is held constant

while the eye moves. Figure 2.6 explains the mechanisms causing this kind of blur.

Hold-type blur can be modeled as a convolution with a box filter oriented in the

object motion direction: As the eye moves, the retinal projection moves and, therefore,

is spread across a constant box-shaped profile [Klompenhouwer and Velthoven 2004].

The box-filter support size, and thus the strength of blur, depends on the moving

pattern, velocity, and the frame-hold duration. The faster the motion, the longer the

distance in terms of pixels and consequently, this leads to more blur. With increasing

refresh rates, the hold-type blur is reduced because the hold time itself is getting shorter.

Figure 2.7 illustrates the amount of perceived blur, introduced by hold-type displays
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Figure 2.6: A depiction of hold-type blur for a ball moving with a translational motion

of constant velocity. In the top row we show six intermediate positions at equal time

intervals taken from a continuous motion. The empty circles denote the eye fixation

point resulting from a continuous smooth-pursuit eye motion that tracks some region

of interest. For each instance of time, the same relative point on the ball is projected to

the same location in the fovea, which results in a blur-free retinal image. The central

row shows the corresponding hold-type display situation. Here, the continuous motion

is captured only at the two extreme positions. Frame 1 is shown during a finite amount

of time, while the eye fixation point follows the same path as in the top row. This

time, different image regions are projected to the same point on the retina. Temporal

integration registers an average color leading to perceived blur as shown in the bottom

row.

when reducing the refresh rate from 120 Hz to 60 Hz. In the limit, smaller hold times

can remove hold-type blur completely, but this requires feeding displays at higher

frame rates. Interestingly, the problem of hold-type blur was not prominent in old CRT

displays, where the light from a cathode tube was flashed only for a very short moment

of time. Therefore, frames were not kept in the same position for extended period of

time which causes blur in LCD displays.

2.2.4 Image Quality Improvements via Motion

It is expected that motion can potentially degrade the perceived image quality, e. g., by

introducing motion blur. Interestingly, it has been shown that in many cases presence

of motion can also improve image quality. For example, Schütz et al. [2008] reported

a 16 % increase of visual sensitivity during SPEM for foveally presented luminance

stimuli of medium and high spatial frequencies compared to the static case. This HVS

mechanism serves towards a better recognition of tracked object, which contributes

to human survival skills. A similar increase of sensitivity has been observed for

isoluminant chromatic patterns. Also visual hyperacuity is maintained for moving
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Figure 2.7: Simulation of hold-type blur. An animation sequence with the sample

frame as shown on the left is displayed simultaneously with 60 and 120 Hz refresh rates

on a Samsung 2233RZ 120 Hz display. The effective velocity of horizontal motion as

seen on the screen is the same in both cases. The user’s task is to adjust the blur in

the sequence refreshed with 120 Hz until the level of blur matches the 60 Hz sequence.

The average outcome of such an experiment is shown on the right. In other words, the

sequence of blurred frames (right) at 120 Hz are visually equivalent to the sequence of

sharp frames (left) displayed at 60 Hz.

targets at uniform velocity in the range 0–4 deg/s [Fahle and Poggio, 1981]. Moreover,

an illusory displacement can be observed when displaying two parts of a line with

a few milliseconds delay [Burr, 1979] because for both targets the HVS assumes a

smooth motion and their different perceived locations are correlated with the delay

between their exposure. Fahle and Poggio [1981] stress the role of the constant velocity

assumption as an important constraint in the target position interpolation by the HVS.

An interesting visual illusion is the so-called motion sharpening [Ramachandran,

Rao and Vidyasagar, 1974]. Surprisingly, the HVS seems to be equipped with a motion

deblurring mechanism which may cause moving blurred images to appear sharper

than their static counterpart. Westerink and Teunissen [1995] have observed that for

velocities higher than 15–20 deg/s the perceived sharpness of images blurred with a

6-pixel-wide filter appears similar to the original sharp images undergoing the same

motion. Takeuchi and De Valois [2005] investigated the motion sharpening effect by

interleaving sharp and blurred frames. The viewers could not see any difference in the

video sharpness even if two thirds of the images had been blurred, but they complained

about flickering for low refresh rates. This idea has successfully been exploited in

video compression and transmission applications [Fujibayashi and Boon, 2008], where

selected frames have been filtered off-line to reduce the required bandwidth.

Surprisingly, also time averaging related to hold-type blur, which most of the time

reduces image quality, can also improve it. Hara and Shiramatsu [2000] observe that

a linear image movement at a specific velocity across the display extends the pass

band of the image spectrum for some special pixel color mask mosaic configurations.

They show that for some spatial subpixel configurations, such as an RGGB-mosaic, the

perceived image quality can be improved, in particular by reducing detail discoloring.

However, they conclude that the extension of the pass band does not improve the image

quality for the standard |RGB|RGB| . . . arrangement, which is predominant in LCD

displays, including the ones considered in this work.
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Figure 2.8: Sensitivity to different depth cues. Redrawn from [Cutting and Vish-

ton 1995]

Besides the here-described qualities that can be improved when motion is present in

the scene, it has been shown that motion can also improve depth impression for moving

objects or moving observers [Rogers and Graham 1979]. Above examples show that

although the perception of image motion is quite involved, it does not contradict but

under certain conditions often improves quality and more interestingly detail visibility.

2.3 Depth Perception

The quality dimensions described above , i. e., spatial and temporal resolution, are

crucial when considering adopting content for different display devices. Such retar-

geting is recently receiving significant attention in the context of 3D stereo due to the

growing importance of this technology in many areas (e. g., video games, feature films

and TV production). Although 3D movies, 3D games or even first 3D TV channels

are accessible to a wide range of customers, many challenges exist when aiming to

produce stereo content that is perceptually convincing. Therefore, it is necessary to

account for properties of the HVS, not only in order to create high quality 3D content

but also to assure viewing comfort. In the following part, we discuss the foundations

of depth perception.

2.3.1 Depth Cues

In order to obtain best layout perception the HVS relies on a large number of different

mechanisms that allow us to perceive depth in the real world. They are known as

depth cues and can be categorized [Palmer 1999] as pictorial (occlusion, perspective

foreshortening, relative and familiar object size, texture and size gradients, shadows,
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aerial perspective), dynamic (motion parallax), ocular (accommodation, vergence)

and stereoscopic (binocular disparity). The HVS exhibits different sensitivity to them

(Figure 2.8), which mostly depends on the distance between the observer and the

observed objects [Cutting and Vishton 1995]. The HVS is also able to combine the

information coming from different cues even if they contradict each other [Palmer 1999,

Chapter 5.5.10]. Dominant cues may prevail or a compromise 3D scene interpretation

is achieved. An extensive overview of how different cues interact with each other and

how those interactions can be modeled has been presented in [Howard and Rogers 2002,

Chapter 27].

2.3.2 Disparity (Stereopsis) Perception

Stereopsis is one of the strongest and most compelling depth cues, where the HVS re-

constructs distance by the amount of lateral displacement (binocular disparity) between

the object’s retinal images in the left and right eye [Palmer 1999, Chapter 5.3]. Through

vergence both eyes can be fixated at a point of interest (e. g., F in Figure 2.9), which is

then projected with zero disparity onto corresponding retinal positions. For any degree

of vergence exists a set of points featuring zero disparity which is called the horopter.

All points in front of the horopter lead to non-zero crossed (negative) disparity, which

increases as their distance to the observer is reduced. Similarly, all points behind the

horopter, such as point P in Figure 2.9, feature uncrossed (positive) disparity, which

increases with the distance to the observer. The disparity at P for the fixation point F
is measured as the difference of vergence angles ω−θ (Figure 2.9). Note that this is

different from the computer vision meaning of this word, where, disparity describes

the lateral distance (e. g., in pixels) of a single object inside two images (Figure 2.9). In

this dissertation we will use “disparity” in the sense of perception literature and data,

while “pixel disparity” refers to the vision definition.

Depending on direction two kinds of disparities exist: horizontal and vertical.

Although latter can contribute to depth perception [Howard and Rogers 2002, Chap-

ter 20.3], the contribution is not as big as in the case of horizontal disparities. Therefore,

usually only these are considered while vertical disparities are often avoided to assure

viewing comfort.

Eyes

Vergence

Pixel
disp.

F P

Horopter

Comfort endsComfort starts

ω θ

Figure 2.9: Binocular vision.

Binocular Fusion

Although objects in a scene, in most cases, create misaligned retinal images, the

HVS is able to fuse them in order to create a single image, instead of perceiving

copies of the objects. Usually, it is assumed that this is only possible in a certain
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distance/region around the horopter, called Panum’s fusional area. Outside of this

area double vision (diplopia) is experienced. Binocular fusion is, however, much

more complex process and it depends on many factors such as individual differences,

stimulus properties (better fusion for small, strongly textured, well-illuminated, static

patterns), and exposure duration. For example Tyler [1973] measured diplopia limits

for sinusoidal wave corrugations depending on their spatial frequency. He showed

that for such corrugations the HVS is able to fuse low spatial frequencies (0.03 cpd)

for very large disparities (~300 arcmin) whereas for high frequencies (3 cpd) double

vision is reached very quickly (~2 arcmin). Similar measurements repeated later for

square wave corrugations [Tyler 1975] showed that for this kind of corrugations fusion

limits decreases significantly, especially for lower frequency patterns. This suggests

that binocular fusion operates much more efficiently on gradual spatial depth changes

then abrupt once. It is important to remember that the same as stereoacuity, fusion

limits vary depending on the subject. It was also shown that for a brief stimulus

exposure (200 ms) fusion limits could drop below 27 arcmin for crossed and 24 arcmin

for uncrossed disparity, while for longer exposures (2 s) eye-vergence responses have

been executed (motoric fusion) that increased the disparity limits to 4.93◦ for crossed

and 1.57◦ uncrossed disparity [Yeh and Silverstein 1990]. Even though beyond those

limits double vision is experienced, perception of depth differences is preserved much

longer. It can be observed [Tyler 1973] that depth limits, which are influenced by

similar factors to those that influence double vision, are a couple of times higher than

diplopia limits.

Disparity Sensitivity

As stereopsis, a low-level depth cue, is one of the strongest cues that is used by the

HVS for depth differences discrimination, it is interesting to study how sensitive the

HVS is to this kind of signal. This sensitivity can be conveniently studied in iso-

lation from other depth cues by means of random-dot stereograms as proposed by

Julesz [1971]. It turns out that disparity shares a number of properties with brightness

and contrast perception [Brookes and Stevens 1989; Lunn and Morgan 1995; Bradshaw

and Rogers 1999]. One of the most important findings from this area is contrast
sensitivity function (CSF) which defines visibility of different luminance stimuli de-

pending on their spatial frequency. In disparity perception analogous function is called

disparity sensitivity function (DSF) and it describes visibility of differently corrugated

in-depth patterns. This function, similarly to CSF, is found to also depend on the

spatial frequency and exhibit similar characteristic. It has familiar inverse “u”-shape

with a cut-off frequency around 3 cpd with a peak sensitivity around 0.3–0.5 cpd

(cycles-per-degree) where stereoacuity falls into the range of 2–6 arcsec (Figure 2.10).

In luminance contrast perception, spatial frequency starts to have neglectable influ-

ence on visibility for high contrast values (contrast constancy). Similarly to this, for

larger-amplitude (suprathreshold) depth corrugations [Ioannou et al. 1993], the mini-

mal disparity changes that can be discriminated (discrimination thresholds) are less

dependent on spatial frequency [Howard and Rogers 2002, Figure 19.24 d]. Those

thresholds exhibit a Weber’s Law-like behavior and increase with the amplitude of

corrugations [Howard and Rogers 2002, Figure 19.24 d]. Also analogous to luminance

maladaptation, where the HVS can hardly adopt to rapidly changing illumination

conditions, disparity perception is subject to a similar mechanism. Disparity detection

and discrimination thresholds are increasing when corrugated patterns are moved away
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Figure 2.10: Disparity sensitivity as a function of corrugation spatial frequencies.

Redrawn from [Bradshaw and Rogers 1999].

from the zero-disparity plane [Blakemore 1970, Figure 6]. The larger the pedestal

disparity (i. e., the further the pattern is shifted away from zero-disparity) the higher

are such thresholds.

Disparity vs. Pixel Disparity

Another interesting fact from disparity perception is that apparent depth is dominated

by the distribution of disparity rather than absolute pixel disparity [Brookes and

Stevens 1989]. This is again similar to apparent brightness which is governed by

contrasts rather than absolute luminance. While the precise relationship between

apparent depth and disparity features is not fully understood, the HVS is most sensitive

to regions containing a second-derivative component of disparity and depth is perceived

most effectively at surface discontinuities and curvatures, where the second order

differences of disparity are non-zero. This means that binocular depth triggered by

constant disparity gradients (as for slanted planar surfaces) is weak and such regions

are scaled with respect to bordering disparity discontinuity. In fact, those regions

are mostly dominated by the monocular interpretation [Brookes and Stevens 1989].

This suggests that from the perception point of view it is more interesting to consider

disparity (i. e., pixel disparity changes) rather then absolute pixel disparity.

Cornsweet Effect

This similarity to luminance perception exists also in regards to different illusions

related to disparity and luminance contrast. For example, Craik-O’Brien-Cornsweet
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perceived shapes

introduced disparity

Figure 2.11: Top: A circle with depth due to disparity and apparent depth due to

Cornsweet disparity profiles in anaglyph. Texture was required to provide disparity

cues. Bottom: The corresponding disparity profiles as well as perceived shapes. The

solid area depicts the total disparity, which is significantly smaller when using the

Cornsweet profiles.

illusion is a well-known luminance-contrast phenomenon where two regions with the

same luminance are separated by a sharp discontinuity with luminance gradually de-

caying towards equiluminant regions [Kingdom and Moulden 1988]. The two different

lightness levels at the discontinuity are propagated by the filling-in mechanisms of the

HVS which results in the impression that one region is brighter. Thus, the illusion

creates an apparent brightness difference between both regions, which leads to similar

appearance as the introduction of physical differences by means of a step function

separating the regions, but without the loss of dynamic range [Pratt 1991; Krawczyk,

Myszkowski and Seidel 2007]. Different shapes/profiles can be used to produce such a

local contrast [Kingdom and Moulden 1988].

It was shown that the Cornsweet effect holds for quite different signals such as

perceived line lengths or texture pattern density [Mackay 1973]. Anstis et al. [1978]

found that Cornsweet Illusion for depth exists and a depth Cornsweet profile adds to

the perceived depth difference between real textured surfaces. The strong apparent

depth impression arises at sharp depth discontinuities and is maintained over regions

where depth is actually decaying towards equidistant ends. Rogers and Graham [1983]

confirmed the effect for random-dot stereograms and concluded that the gradual decay

is mostly not noticeable, whereas the visible discontinuity is propagated but the HVS

over both regions. This effect is illustrated in Figure 2.11 for textured stereograms,

where the screen disparity is directly modulated accordingly to the Cornsweet profile (a

symmetric double-spur shaped profile) as shown at the bottom of the figure. Rogers and

Graham observed that the induced depth difference over the whole surfaces amounted

up to 40% with respect to the depth difference at the discontinuity, which was roughly

twice larger than in experiments conducted by Anstis et al. for real surfaces. They

further measured that the effect is stronger along the horizontal (i. e., eye separation)
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Figure 2.12: Four stereo images in anaglyph are considered where no stereo cue other

than stereopsis is present, similar to random dot stereograms [Julesz 1964 Science].

Note that cascading the local Cornsweet profiles still conveys a consistent impression

of discrete depth changes, while in the traditional approach disparity accumulation is

required for proper stereoscopic effect.

direction, but recent results indicate no significant difference with respect to the

orientation [Sato 2004].

The great advantage of the Cornsweet disparity is its locality that enables depth cas-

cading (refer to the depth Cascade and Mondrian in Figure 2.12) without accumulating

screen disparity as it would usually be required.

Recently, it was found that other effects associated with lateral inhibition of neural

responses (such as Mach bands, the Hermann grid, and simultaneous contrast illusions)

that are mostly known from luminance perception, can be also readily observed for

disparity contrast [Lunn and Morgan 1995].

Visual Channels for Disparity

The fact that disparity as well as luminance perception exhibit similar characteristics,

is an evidence for existing similar mechanisms that luminance and disparity signal

undergo. Techniques used in spatial contrast vision, such as masking and adaptation,

show that the CSF shape is an envelope of responses for a number of independent chan-

nels, which are tuned to different spatial frequencies [Daly 1993]. The same conclusion

can be drawn when similar techniques are employed with respect to disparity (refer to

[Howard and Rogers 2002, Chapter 19.6.3d] for the survey of relevant experiments).

The independent channel bandwidth for disparity modulation has not been clearly

established, but existing estimates suggest the range of 1–3 octaves. This imply that

disparity and luminance perception could be modeled in a similar way.
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2.3.3 Joint Disparity and Luminance Perception

The properties of the human disparity perception which are described so far assume

that luminance patterns in the image have no influence on the perceived disparity or

that the underlying luminance maximizes disparity experience. Disparity detection and

discrimination thresholds are routinely found by applying different depth corrugations

to carefully textured images that have good contrast and clearly visible structure.

However, such ideal conditions are hardly found in real images, where luminance is

often band-limited and contrast can be low. In those conditions it is expected that

sensitivity of the HVS to disparity signal will be reduced. In this part of the dissertation

we will present the perception background related to the influence of luminance patterns

on stereoacuity.

Spatial band-pass channels

Although it is often assumed that correspondence matching in stereo between image

patterns in both eyes is achieved at the level of luminance edges, there is direct evidence

that band-pass limited channels in the luminance domain play an important role in

disparity processing [Heckmann and Schor 1989]. The observation is not surprising

since contrast processing in the HVS follows such principles and contrast is required for

stereo matching. Hence, one can expect a strong correlation between stereoacuity and

contrast characteristics such as the compressive contrast nonlinearity at suprathreshold

levels [Wilson 1980] and the contrast sensitivity function (CSF) [Barten 1989], which

we discuss next.

Contrast magnitude

Legge and Gu [1989] and Heckmann and Schor [1989] investigated stereoacuity for

luminance sine-wave gratings and found that perceivable disparity thresholds decrease

with increasing contrast, which can be modeled using a compressive power function

with exponents falling into the range from -0.5 to -0.7. Similar results have been

obtained for narrow-band-filtered random-dot stereograms by Cormack et al. [1991]

(Figure 2.13). They observed a significant reduction of stereoacuity for low contrast

(below tenfold contrast detection threshold) which relates to the lower reliability of

edge localization in stereo matching due to a poorer signal-to-background-noise ratio

in band-pass luminance channels [Legge and Gu 1989]. For contrast at suprathreshold

levels, stereoacuity is little affected.

Spatial contrast frequencies

Legge and Gu [1989] measured the necessary luminance-contrast thresholds to detect

a fixed disparity for sinewave gratings of various spatial frequencies. They neglect

disparity magnitude, but derive a CSF for stereopsis, whose shape is similar to the

luminance-CSF shape. Monocular-luminance thresholds are usually assumed to be

0.3–0.4 log units smaller than the luminance contrast needed for stereovision. Pul-

liam [1981] measured detection thresholds of sinusoidal disparity-luminance corru-

gations. He found that sensitivity to disparity increases with increasing luminance

frequencies from 0.3 to 7 cpd.
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Figure 2.13: Stereoacuity as a function of luminance contrast. Redrawn from [Cor-

mack, Stevenson and Schor 1991].

Lee et al. [1997] measured the impact of luminance frequency on disparity percep-

tion for band-pass-filtered random-dot stereograms. They showed that the relationship

between disparity sensitivity and luminance frequency exhibits a band-pass character-

istic with the maximum located at a luminance frequency of 4 cpd, which is shifted for

lower-frequency disparity modulation below 0.25 cpd to around 3 cpd. Their conclusion

was that the observed differences in sensitivity result from the stimulation of different

visual channels, which are tuned to different spatial modulations of luminance and dis-

parity. They also observed that there is a mostly weak influence of luminance frequency

on disparity sensitivity at suprathreshold disparities, except for high luminance frequen-

cies as well as low disparity frequencies. Lee et al. considered relatively narrow ranges

of luminance frequency 1–8 cpd , corrugation frequency 0.125–1.0 cpd, and disparities

up to 4 arcmin. The results by Lee et al. have been challenged by Hess et al. [1999],

who experimented with randomly-positioned Gabor patches with modulated disparity.

Hess et al. found that low-frequency disparity modulations were detected equally well

for low and high-luminance frequencies. However, for high-frequency disparity corru-

gations, perception of depth was enhanced when a high-frequency luminance pattern

was used, which improves its localization and thus facilitates stereo matching.

Independent-channels hypothesis

As described above, stereoacuity is influenced by luminance spatial frequency as well

as luminance contrast. However, the measurements presented so far were performed

only for isolated spatial frequencies and contrast values of the luminance pattern.

Therefore, it is unclear how sensitive the HVS is to disparity corrugation when the

luminance pattern consists of different luminance spatial frequencies and contrasts.

A theory that explains this is the independent-channels hypothesis for disparity
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Figure 2.14: Disparity detection thresholds and supra-thresholds for two disparity

amplitudes (2 and 4 arcmin) plotted as a function of luminance center spatial frequency.

The four panels correspond to different corrugation frequency indicated on top of each

panel. Redrawn from [Lee and Rogers 1997].

processing which was presented by Marr et al. [1979]. It implies that stereoacuity is

determined by the most sensitive channel and remains uninfluenced by others. This

hypothesis has been confirmed in psychophysical studies where stereoacuity has been

investigated for independent, as well as summed up sine-wave stimuli of different

luminance-contrast frequencies and magnitude [Heckmann and Schor 1989]. It turns

out that the phase relationship of sine-wave components, which affects also the local

shape of the resulting luminance gradients, is not utilized in stereoacuity. What matters

are mostly peak-to-through luminance gradients. Even more convincing is that the

thresholds obtained for sinusoidal luminance gratings, for which stereoacuity is best (in

the range of 3–10 cpd), are the same as those obtained for multi-frequency square-wave

luminance stimuli [Legge and Gu 1989, Fig. 3].
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Asymmetry effect

An interesting observation is that asymmetry effects in depth perception can occur

(Fig. 2.15), which have not been reported so far. We consider two patches, one in front

of the other, each with a luminance texture that we refer to as the support, or say that it

supports the disparity. Limiting the deeper patch to a lower-frequency support, makes

the step between the patches less visible and, finally, disappear. When swapping the

luminance patterns, the depth difference becomes visible again.

Texture 
swap

Figure 2.15: Influence of spatial luminance patterns on the depth perception (here

shown in anglyph colors). The physical depth of all stimuli is equal, yet the perceived

depth (orange profiles, the viewing direction is from top to bottom) varies depending

on the applied texture patterns. High-frequency removal from the texture on the

right/deeper patch leads to a perceived depth reduction (second and third stimuli from

the top). While the third stimulus barely exhibits any perceivable depth, just swapping

textures leads to a strong depth impression for the fourth stimulus. Stimuli are shown

in anaglyph colors.

One could assume that pictorial depth cues overrule the influence of binocular

disparity, which was studied by Marshall et al. [1996] and Mather et al. [2002]. They

tested the influence of edge blur on depth discrimination between textures of different

blur scales. Their observation suggests that, for a sharp depth edge, the blurred

texture should be perceived as more distant than the sharp one, which also agrees

with results obtained by Rohaly et al. [1999]. However, this hypothesis disagrees with
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our observation that blurring the texture of the distant patch brings it closer to the

observer. A different explanation is based on relative size and texture density cues.

These normally indicate that lower luminance-frequency textures are closer to the

observer, which matches the observation in the first three stimuli in Fig. 2.15. Further,

the last stimulus, when textures are swapped, contains agreeing pictorial and binocular

cues, leading to a depth impression that matches the binocular disparity. Nonetheless,

this explanation disagrees with Marshall et al. and would indicate that the observed

depth difference in the last stimulus should be bigger than in the first, which cannot be

observed. Recently, Held et al. [2010] have investigated how perceived distance and

size are affected by introducing blur.

We develop our interpretation of the asymmetry effect in Chapter 6, based on the

fact that the sensitivity to pictorial cues such as texture density or relative size is much

lower than sensitivity to binocular disparity in the considered depth range [Cutting and

Vishton 1995].

2.3.4 Visual Comfort

As mentioned before, besides the quality of the presented 3D stereo, also viewing

comfort plays a crucial role in the production process. In 3D displays, the comfort

strongly depends on interactions between eye vergence and accommodation which

tends to maintain the display screen within the depth of focus (DOF) that roughly

falls into the range of ±0.3 diopters [Hoffman et al. 2008]. This interaction can be

usually easily interrupted by large horizontal disparities. When such are present in

the scene, vergence tends to bring the retinal disparity within Panum’s fusional area,

driving the fixation point away from the screen plane. This way, a conflict between

the fixation and the focusing point arises that can be tolerated to some degree by the

accommodation-vergence mechanisms, but at the expense of possible visual discomfort

[Hoffman et al. 2008]. The most recent model for visual comfort predicting the

influence of horizontal disparities was presented by Shibata et al. [2011] (Figure 2.16).

Besides large horizontal disparities also vertical disparities can be a source of visual

discomfort. Although such disparities cannot be experienced in the real world, they

might be created by imperfections in the camera setup [Woods 1993].

Apart from large disparities there are also other sources of discomfort. Most of

them are related to inconsistencies between the left and right view (e. g., differences in

brightness, crosstalk, magnification, photometric asymmetries). Such binocular image

imperfections were recently investigated by Kooi et al. [2004].
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and the nearest object that can be displayed as a function of viewing distance. Redrawn

from [Shibata et al. 2011].





3
Previous Work

In this chapter, we describe previous work related to contributions presented in this dis-

sertation. We start with an overview of temporal upsampling techniques in Section 3.1,

discussing methods that are used for improving temporal resolution in computer graph-

ics as well as in the TV industry. In the same part, we also present techniques related

to the synthesis of 3D stereo images. Next, we continue with the temporal domain

(Section 3.2) but this time focusing on techniques that exploit it in various ways in

order to improve the perceived spatial image quality. In Section 3.3, we discuss recent

work in the field of 3D stereo content creation and manipulation.

3.1 Temporal Quality

Under standard conditions, the real world is perceived by the HVS as a crisp and

sharp mental image and usually, any object motion in a scene appears smooth. This

is achieved by perfect and continuous stabilization of moving object on the retina

which is performed by the HVS. However, these conditions are violated when we

consider a display device. Moving on screen objects are no longer displayed in a

continuous manner but rather discrete, i. e., a moving object is kept for extended period

of time (frame duration) at the same position. At the same time human eyes act as

they do in reality, i. e., they track moving objects in a continuous way. As described

in Section 2.2.3, this mismatch results in hold-type blur, which can be experienced

while watching animations or videos on display devices. The blur, introduced to

moving objects, spoils the quality of highly detailed content that we can capture with

today’s cameras and destroys the effect of high-resolution displays that could such

content reproduce. For display manufacturers it is a big bottleneck, as in a presence

of hold-type effect it is questionable whether further increase of screen resolution to

e. g., 4 or 8K is necessary before solving the problem of temporal resolution. The

strength of the blur is related to the angular velocity of moving objects. Therefore, the

problem gets bigger with growing screen size, which is recently desired in the context

of cinemas, visualization centers or more affordable and popular home cinemas. Also,

when viewers move closer to their display devices to appreciate highly detailed content,

the coverage of viewing angle gets larger which amplifies the hold-type blur. Therefore,

today’s new designs, apart from improved contrast and brightness, need to assure that

the temporal display resolution is sufficient to convey a high-quality image appearance.

A simple solution to reduce the unwanted effect of hold-type blur is to reduce

the “hold time”, i. e., the time for which a moving object is kept static. This normally

27
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requires a high framerate, which is usually not provided in broadcasting applications.

To solve this problem display manufacturers designed techniques that are able to

reduce hold-type blur based on a low-framerate stream of consecutive frames only.

Such solutions are usually implemented in a form of small computational units in TV-

sets, which requires the methods to be very efficient. The problem of low framerate is

also common in computer graphics, where temporal resolution is affected by expensive

realistic rendering, which needs to be upsampled in order to create smooth animations.

Although computer graphics solutions can produce results of higher quality than

solutions implemented in TV-sets, they achieve this goal at much higher computational

times, which limit possible target framerates (e. g., to 60 Hz). Also, those solutions

usually use more efficient graphics units and reuse additional information available

during rendering time such as depth maps, motion flow, which makes the problem

easier.

In this section we discuss both groups of solutions, i. e., those embedded in TV-sets

as well as those that are used for computer graphics applications. We also discuss how

they extend to stereo view synthesis.

3.1.1 Industrial Solutions in TV-sets

The key idea of all methods included in new off-the shelf displays is usually to

increase the framerate, e. g., to 100 or 200 Hz (respectively 120 and 240 Hz for NTSC

content), by introducing intermediate frames produced internally from a low-framerate

broadcasting signal. Here, we shortly summarize existing solutions while an extended

survey is provided in [Feng 2006].

The simplest solution is black data insertion (BDI), which reduces the hold-type

effect by introducing new black frames interleaved with the original. This is similar to

the way old CRT displays work, where the light is emitted only for a small fraction of

the frame time. This solution, however, comes at the expense of drawbacks as well as

limitations. Similarly to classic CRT displays it can significantly reduce brightness or

introduce temporal flickering, especially in large bright areas, where the HVS temporal

sensitivity is high. Further, it can also cause color desaturation.

Instead of inserting black frames, a more efficient hardware implementation of

this approach is turning on and off backlight of LCD panel. This procedure is called

backlight flashing (BF) [Pan, Feng and Daly 2005; Feng 2006] and is possible because

in many available displays, LCD panels are illuminated using hundreds of LED’s,

whose response is very fast. It is, therefore, easy to flash them at frequencies as high as

500 Hz. Besides hold-type blur reduction, such techniques are also useful for reducing

the effect of long LC response. In modern devices, backlights are built out of hundreds

of LEDs, that are flashed only after the LCD reaches its target level. Although helpful

for hold-type blur and response-time problem, this approach, similarly to BDI methods

is prone to visible flickering and reduces brightness due to shorter backlight duty cycles.

Note that BF and BDI essentially mimic impulse-type displays, such as CRT. They,

hence, reintroduce drawbacks of older displays and void the idea of power efficiency

of LCD displays due to constant signal over time.

The problems of black data insertion methods can be overcome by not using

black frames, but original frames that are duplicated and blurred (blurred frame inser-
tion (BFI). Such solution, which was described in [Chen et al. 2005], can on the other
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hand cause visible ghosting as the blurred frames are not motion compensated.

The problem of ghosting is solved by another category of methods called frame
rate doubling (FRD). In those techniques, additional frames are obtained by interpo-

lating pairs of original ones along their optical-flow trajectories [Kurita 2001]. Such

methods are commonly used in current TV-sets, where they can easily expand standard

24 Hz content to much higher framerates e. g., 240 Hz, without reducing brightness or

introducing flickering problems.

The biggest limitation of frame interpolation techniques comes from the optical-

flow estimation, which is a difficult problem, prone to artifacts. All this affects the

quality of in-between frames. Our experimental investigations, which we conducted

on a modern TV-set using a high speed camera (1,200 frames-per-second), revealed

that, although for objects that are moving slowly optical-flow-estimation methods per-

formed by TV-sets work well, such algorithms tend to fail for occlusions, high velocity

motion, and highly textured regions. This is due to the high efficiency requirement

that needs to be fulfilled by such methods, which cannot deliver a good estimation

at low cost. To avoid visible errors optical flow is automatically deactivated in case

of doubts and original frames are simply replicated, at the expense of an increasing

jaggy motion or hold-type blur. Even such precautions do not help in all situations and

objectionable artifacts still can appear for some realistic scenarios. Figure 3.1 shows a

pathological case, which cannot be handled by the tested TV-set. Another drawback

of interpolation methods comes from the fact that interpolation of in-between frames

requires knowledge of future frames. This introduces a time lag which is usually not a

problem for broadcasting applications, however, in scenarios where a high interactivity

is needed (e. g., video games or interactive visualizations) this lag may not be necessar-

ily tolerated. If an input arrives between two frames (no matter the display frequency),

the interaction is visualized only in the next frame. Thus, 60 Hz react with 30 Hz in

the worst case. Perceptual experiments showed that subjects could detect delays in the

interaction even beyond 90 Hz [Luebke et al. 2002]. Interestingly, it is sometimes stated

that beyond 60 Hz, no performance increase is possible [Luebke et al. 2002]. This,

however, depends strongly on the task and display. Our study presented in Section 9.2

shows that in dynamic environments higher refresh rates do have an important impact.

In fact, temporal visual lags can be perceived as a strong distraction for some cross-

modalities, as studied for audio [Dixon and Spitz 1980], haptics [Levitin et al. 2000] or

physics [O’Sullivan and Dingliana 2001].

Instead of increasing the framerate, a software solution to reduce the hold-type blur

is to apply an image filter to the content to be shown on the screen, that aims to invert

hold-type blur. This technique is called motion compensated inverse filtering (MCIF).

As hold-type blur can be modeled in image-space by a local 1D convolution kernel

oriented in the direction of the optical flow, first, motion vectors are locally computed

using a space-time recursive search blockmatcher. It is then assumed that eye tracking

locally follows these motion which cause the blur and deconvolution technique can

be used in order to inverse this process. In practice, it boils down to applying a local

sharpening filtering along motion trajectory whose strength is chosen to compensate

for hold-type blur as proposed by in [Klompenhouwer and Velthoven 2004]. The

effectiveness of such a technique is limited by the fact that hold-type blur is a low-pass

filter, which removes certain frequencies. Therefore, none of those frequencies that are

completely lost can be restored. Only those that are attenuated by hold-type blur can

be recovered by amplifying them beforehand using a linear filtering. What also limits
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Figure 3.1: Single frame presenting a failure case of off-the-shelf display in performing

image interpolation from 24 to 240 Hz signal. Frame was captured using high-speed

camera at 300 fps.

this method is the fact that the amount of sharpening that is required for perfect blur

compensation would lead to extreme filter band-pass properties, which is not feasible

due to possible intensity clipping.

There exists a possibility to combine several of the described methods, for example

the in-between frame derivation based on optical flow with the backlight flashing.

However details on such custom solutions are not published. In Table 3.1 we present a

comparison of different solutions used by the TV industry.

Table 3.1: Comparison of different methods for frame interpolation provided in TV-

screens.

BDI BF BFI FRD MCIF

LCD response required High Moderate High High No

Backlight response required No High No No No

Optical flow quality No No No High Moderate

Ghosting artifacts Possible Possible Yes No No

Flickering artifacts Yes Yes No No No

Luminance reduction Yes Yes No No No

Limitation of blur reduction Flickering Flickering No No Freq. cut-off

Other possible artifacts No No No Fast motion Oversaturation

3.1.2 Computer Graphics Solutions

The problem of insufficient temporal resolution is also known in computer graphics.

However, in contrast to the TV community, it is not directly motivated by the hold-type

blur but rather jagginess of animation. In the computer graphics community a high

framerate is desired as it has a huge influence on animation smoothness and interactiv-

ity. Because high quality image generation techniques are very often time consuming,

a high framerate is not always possible to achieve. Therefore, less expensive methods
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Source image Target imageSource mesh Target meshInterpolated images

Figure 3.2: Metamorphosis between two faces using image warping technique. Source:

[Wolberg 1998].

for improving the temporal resolution of the content without scarifying overall quality

were proposed. Those methods usually do not target such high framerates as solutions

in display devices. The usual scenario is to upsample a content that provides a couple

of frames per second to a stream that creates an impression of smooth animation (e. g.,

30 Hz). This usually lowers efficiency requirements when compared to TV solutions,

which in order to produce a 200 Hz sequence can spend only a couple of millisec-

onds to compute individual frames. Another facilitation in case of some methods

developed for computer graphics applications is that they rely on computer-generated

content. This makes additional information such as depth or motion flow available

for those techniques, which enables solutions that can achieve much higher quality

than TV-solutions and still have a huge range of applications to cover, e. g., games,

visualizations, animated movies. Here, we present methods for temporal upsampling

grouped into three categories: image warping, intermediate frames generation and

interactive techniques.

Image warping

One group of methods which aim at creating additional frames are morphing techniques.

They do not target directly temporal frame interpolation but rather solve a classic

computer graphics problem of transforming one instance of a given object into another.

This is a powerful tool for visual effects and was pioneered in 1988 in the movie

“Willow”. The idea behind this approach [Smythe 1990] was to morph texture as well

us underlying shape between two target images, creating a sequence of interpolated

images presenting a metamorphosis (Figure 3.2). For this purpose a mesh aligned with

shape features was used for shape interpolation whereas textures were blended. Later,

this approach was further improved. Beier et al. [1992] proposed to use line pairs as

features that guide morphing. Also different kinds of features such as points, polylines

or curvatures are possible using a method presented by Lee et al. [1996] where

morphing between two images is determined using energy minimization approach. An

extended survey discussing more of those techniques was presented by Wolberg [1998].

Recently Lie et al. [2009] used content-preserving warps targeting the problem

of video stabilization. With their warping technique they can generate images as if

they were taken from nearby viewpoints. This allows them to resynthesize a given

video stream as if the camera path were smooth, providing a stabilized video while the

original image content remains intact.

Although the here-presented morphing techniques are not designed for temporal

upsampling purposes, they can be successfully used in this context.
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Intermediate frames generation

Most of the image warping techniques mentioned above do not make any assumption

about the similarity of two interpolated images and, therefore, can interpolate between

two arbitrary images. This usually requires some user help (e. g., feature specification).

However, in case of temporal interpolation for video streams, neighboring frames are

usually very similar. This property is extensively explored in methods that directly

target temporal upsampling, where the difference between interpolated frames comes

from a very small time shift, often not bigger than a fraction of second.

An example of such a method is presented by Mahajan et al. [2009]. Their work

is well-suited for a single disocclusion which allows producing high-quality results

for a standard content. However, it requires a full knowledge of future frames and is

computationally expensive, therefore, it is not really suitable for real-time applications.

Although the quality of additional frames is important and such methods as the one

described by Mahajan et al. fulfill this requirement, in the case of temporal upsampling

not all regions of the image are equally important. This fact was exploited by Stich et

al. [2011] who addressed perceptual effects in temporal upsampling of image sequences.

They showed that high-quality moving edges are a key feature for the HVS. Therefore,

ghosting produced by temporal upsampling methods as well as ruined by the hold-type

blur edge sharpness can be a strong distraction. They addressed those perceptual

findings in their method which performs temporal upsampling with improved perceived

quality of edges by making their movement more coherent over time via interpolation.

Interactive techniques

Temporal resolution is a crucial problem in the interactive computer graphics. Usually,

very expensive global illumination techniques that provide convincing rendering results

achieve framerates that are below interactive rates. In such situations, it is desired to use

cheaper techniques to generate additional in-between images which can significantly

improve the perceived quality. Unfortunately, due to the inefficiency of techniques

described above, those cannot be used in interactive scenarios. Methods presented

below take advantage of dealing with computer generated content, which can easily

provide additional information such as depth or motion flow. This allows for more

efficient and effective frames interpolation, which outperforms methods that have

access only to interpolated sequences.

The techniques described in this part are often called “image-based rendering”

methods and were pioneered by Chen et al. [1993] as well as McMillan et al. [1995]

who used a simplified version of the plenoptic model (Figure 3.3) previously introduced

by Adelson et al. [1991] and applied it to view interpolation. This function defines an

image information visible from any point in space and captures all information which

is necessary to reconstruct any view in 3D space. The plenoptic model is defined as a

5D function: position of pixel (3D) and direction of incoming light (2D). Adelson et al.

proposed a 7D function where additional dimensions were time and wavelength. One

can think of extending it even further to higher dimensional function by, for example,

including polarization.

A similar idea was applied in one of the first attempts to increase the number of

frames in the context of 3D interactive applications. A method, which was presented
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(Vx, Vy, Vz)

Figure 3.3: Plenoptic model used by McMillan et al. is defined as five-dimentional

function. Position of the observation is defined in 3D space by (Vx,Vy,Vz) and the

direction where the signal comes from by two angles (θ,φ).

by Mark et al. [1997], relies on depth information which allows for easy reprojection

of shaded pixels from one frame into another. In this way, their method is able to create

many frames out of a single one which was originally rendered. In order to avoid the

problem of disocclusions the authors proposed to use two originally rendered views

to compute in-between frames. This drastically decreases the amount of unknown

information in the interpolated frame and the remaining part is only due to regions

that are not visible in both interpolated views. Similar ideas were exploited in later

solutions, where a re-use of very expensive shaded samples was used to speed up

the image generation process. First such methods, as the one presented in Render

Cache by Walter et al. [1999], scattered information from previously rendered frames

into new ones by means of forward reprojections. This approach is very effective,

e. g, in global illumination where samples are very expensive. Due to problems with

occlusions and gaps that needed to be fixed explicitly, Nehab et al. [2007] proposed a

new caching scheme where forward reprojection is replaced by reverse reprojection,

which also better fits common GPU architectures. Instead of directly using pixel

colors (the final result of rendering) from originally rendered frames it is possible

to reuse intermediate results. Sitthi-Amorn et al. [2008] presented a method which

can automatically choose computationally expensive intermediate values and reuse

them in the next frame rendering, speeding up the whole image generation process.

Another interesting idea was presented by Herzog et al. [2010]. They explicitly made

use of temporal coherence of computer generated animations. Instead of rendering

high-quality individual frames, they proposed to render lower-quality images and take

advantage of the temporal coherence during the upsampling process. Exploiting time-

varying phenomena is interesting particularly in the context of remote rendering, where

not only rendering time and quality is important but also bandwidth [Pajak et al. 2011].

More extensive survey on those techniques can be found in [Scherzer et al. 2011].



34 CHAPTER 3. PREVIOUS WORK

3.1.3 Stereo-view synthesis

Nowadays, the problem of interpolating, extrapolating and creating low-cost additional

frames becomes even a bigger issue as stereo 3D is becoming used in all computer

graphics applications (e. g., movies, visualizations, video games). Therefore, the

ultimate goal is to provide a content that has not only a high temporal resolution but

also allows for stereo viewing. This, however, requires two views (one for each eye)

at the same time. It was noted early, that 3D computer graphics is an excellent means

to generate stereo images [Morland 1976], simply by rendering two individual views.

The main drawback of such a stereo-view creation is that rendering time is doubled. A

surprisingly simple form of stereo view synthesis was proposed as early as 1974 by

Ross [1974]. Assuming a horizontal moving camera, previous frames look similar to

the one eye’s view and future frames look similar to the other eye’s view. Therefore,

playing a video stream with different delays for left and right eyes gives a stereo

impression. This approach, however, is limited to horizontal movements and requires

knowledge of the future or introduces delay, which are both unwanted for interaction

in virtual worlds. Still, the observation that a previous rendering for one eye can serve

as a source for the other eye’s view encourage to exploit this coherence and lower the

cost of second image generation. This makes image-based techniques an interesting

approach for creating the second view. Such techniques can be also of high importance

in scenarios, where depth modifications are desired either to ensure viewing comfort

or for artistic purpose (Section 2.3). In those cases, resulting from the manipulations

depth maps do not necessary match real depth and corresponding stereo images cannot

directly be obtained in a rendering process.

Many methods described in the previous subsection that target temporal upsampling

can be successfully applied to stereo view synthesis. The main difference can be found

in the correspondence that is required for creating new views. In the case of temporal

upsampling a temporal relation between consecutive frames must be known. Such data

can usually be obtained using motion-flow techniques or can be computed from depth

and camera settings for rendering approaches. In the case of stereo-view synthesis,

this correspondence is pixel disparity which can be directly computed from depth.

When such correspondence is known, image warping or reprojection techniques can

be applied. Because the relation between left and right view is defined as a horizontal

shift, those techniques become faster when compared to temporal upsampling as the

samples are reprojected only in the horizontal direction.

Although many ideas from temporal upsampling methods can be brought to stereo-

view synthesis, techniques that directly target temporal view interpolation such as

[Stich et al. 2011; Mahajan et al. 2009] cannot be easily exploited in the context of

stereo as they would required “more-left” and “more-right” images to synthesize new

views. Instead, stereo-view synthesis requires a creation of completely new views,

which is related to view extrapolation rather then the interpolation.

In many cases when the stereo content needs to be created, only one view without

depth information is available. This makes the problem of stereo-view synthesis more

challenging and led to techniques that try to compute a stereo image from a single

view. One possible solution is to first recover depth information using techniques

such as “structure from motion" [Hartley and Zisserman 2000] and, based on this

information, do the stereo-view reconstruction. Such a technique was recently proposed

by Knorr et al. [2008]. A strength of their method is, that it can work for images without
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depth information if they exhibit sufficient features. Zhang and co-workers [2007]

combined those two steps, i. e., depth recover and stereo-view synthesis, and developed

a technique that avoids direct depth map computation but instead synthesizes the

parallax between left and right views directly from the motion parallax present in

monocular video.

Instead of synthesizing a stereo image based on one view only, there are techniques

that rely on partial information of the synthesized frame. This is similar to temporal

upsampling methods where not necessarily all frames are rendered with highest quality

[Herzog et al. 2010]. Sawhney et al. [2001] considered a pipeline where one view is

rendered in a full resolution and the other view, which is supposed to be synthesized, is

available in a low resolution version. They demonstrated how such information can be

efficiently used for stereo-view synthesis. Methods like this are particularly interesting

if subsets of pixels are used to render subsets of views, which fits well to ray-tracing

and volume-rendering [Domonkos et al. 2007].

One of the biggest challenges in synthesizing stereo image pairs are possible

artifacts that can usually be noticed at disocclusion regions. Recently, Lang et al. [2010]

presented mesh-based warping techniques for stereo-content manipulation, which by

solving an energy minimization problem tries to hide possible problems in non-salient

regions. The second biggest challenge in stereo view creation is efficiency. Some of the

techniques presented here, work offline therefore interactive rates are out of the reach.

Other, although achieve interactive speed, still add a significant cost to the rendering

pipeline, hence, stereo viewing cannot be achieved at low computational time.

3.2 Spatial Quality Exploiting Temporal Domain

While higher framerates can improve image sharpness and smoothness of animation

leading to a visible improvement of perceived image quality, it is worth exploring the

temporal domain also in different contexts. Interestingly, it can be used to enhance

other image qualities, which are not necessarily directly related to the temporal domain.

The key idea for such enhancements is to rely on temporal averaging performed by

the HVS and show images which after integration on the human retina convey an

impression of higher quality. In this part, we show how such enhancement can be

achieved for color and resolution.

3.2.1 Color

The main goal of computer graphics as well as the display industry is to faithfully

reproduce the real world. A huge impact on realistic image reproduction has color.

Therefore, people for decades have been trying to reproduce real world colors on display

devices in a way that they create a believable illusion of not looking on a synthetic

content. There has been a huge development in capture devices and acquisition systems

which led to a point where we are able to precisely capture color with its high-dynamic-

range variations. However, still current display devices are only able to reproduce a

subspace of all colors that can be captured.

One of the problem comes directly from the discrete nature of every display device.

It is commonly known that most of current displays are able to display 24-bit colors
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(i. e., 8 bits per channel). It turns out that this is not enough. When a smooth gradient

is shown on a standard device, banding artifacts can be visible (Figure 3.4 a). It

is, however, not commonly known that many display devices are not even able to

physically display 8 bits, although even standard synthetically generated images on

graphics cards usually provide 8-bit color information. Limiting colors to only 6 bits

per color channel makes the quantization errors even bigger (Figure 3.4 b) and not

acceptable, even if natural images are presented. To display the different nuances (2

bits) which would be normally lost, a simple technique called Frame Rate Control
exploits the fact that the human eye integrates information over time. Whenever a

color is not representable by 6 bits, the screen displays its immediate color neighbors

in quick succession over time [Artamonov 2004]. Hereby, the apparent bit depth is

effectively increased because the eye integrates the information and reports an average

value to the brain. It turns out that if we are equipped with a 120 Hz display, popular

now for 3D stereo applications, we can expand dynamic range even further.

8-bits gray scale

6-bits gray scale

a)

b)

Figure 3.4: Small quantization artifacts can be visible when 8-bit grayscale gradient is

presented. The artifacts get stronger when the number of bits is reduced to 6. The effect

might be weak in a print due to a poor color reproduction. For better reproduction

please see the electronic version of this document.

Such averaging properties of the HVS were explored much earlier in video games

where different effects were limited by a small color palette. When for example, in

a video game one wanted to add a shadow to the scene, one would usually rely on a

darkened version of the affected pixels, yet, the necessary darker tints were not always

available. To overcome this limitation, one could draw the shadow only in one out of

two frames, resulting in a flickering shadow. If the refresh rate is high enough to exceed

the critical flickering frequency (CFF) [Kalloniatis and Luu 2009], the affected colors

start to mix with the black of the shadow, hereby, leading to an apparent extension of

the available colors. Similar techniques were also used to create transparent objects.

Temporal integration in the HVS is also exploited for color fusion in digital light

processing (DLP) video projectors. While many devices rely on a spatial RGB-subpixel

integration, DLPs display the RGB color components sequentially with a temporal

frequency over the perceivable flickering limit of the HVS. It is done using a color

wheel with three corresponding filters located in front of the light source. The wheel

rotates accordingly to displayed channels producing red, green and blue channels of
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an image independently, but in rapid succession. These mono-colored images are

integrated in the eye and then lead to the impression of a full-color image. Time

averaging in the context of color is also used in plasma displays, where the brightness

is manipulated by quickly turning primary colors on and off.

3.2.2 Resolution

Besides color, resolution is another quality that is considered as a very important

factor, which influences the appearance of the perceived image. There is a continuous

development in capture as well as display devices, which enables better reproduction

of the unlimited details present in the real world. However, one observation is that

although all devices get better in terms of resolution, there is still a huge gap between

resolution of screens and currently available content. A straightforward example is

scale-preserving rendering, where the resolution mismatch is a big issue. In the real

world, we can clearly distinguish individual hair strands, while such details are usually

rendered much thicker, hence affecting realism. Metallic paint, as often applied to

cars, can have sub-pixel size sparkling effects where a higher resolution increases

faithfulness. Fidelity sensitive applications (e.g., product design, virtual hair styling,

makeup design, even surgical simulations) suffer from such shortcomings, although

todays’ rendering techniques allow for rendering content at very high resolutions.

Also standard capturing devices such as digital cameras offer today a resolution much

higher than the standard resolution of display devices. Besides that, there are computer

graphics techniques that allow for creating even higher resolution content. Techniques

such as panorama stitching or gigapixel photography [Kopf et al. 2007] can combine

multiple images creating bigger images that can easily exceed thousands of megapixels.

Also subpixel information acquired via subtle camera motion has proven useful in many

applications, such as super-resolution reconstruction [Park, Park and Kang 2003] or

video restoration [Tekalp 1995]. In these schemes, subpixel samples from subsequent

frames are merged into explicitly reconstructed images, which exhibit significantly

higher resolution than original footage.

As mentioned before, this development in capturing techniques outperforms possi-

bilities of current display technologies. The commonly used full-HD standard, which

offers roughly 2 megapixels images, is far from what we are able to capture. There-

fore, there is a common problem of image resampling [Mitchell and Netravali 1988]

which enables displaying continuous or high resolution input images on a finite, lower

resolution display. The display image is reconstructed by convolving the input image

with a reconstruction filter for every output pixel. This way the information that

cannot be displayed on the screen (i. e., high frequencies) is removed, and remaining

information can be shown on the device. Popular reconstruction filters are Lanczos’

and Mitchell’s filter [1988]. The latter allows simple tuning of the filter depending on

the content and can mimic most of other filters used in image resampling. Although

people consider different settings and different filters such a downsampling procedure

filters out high-frequency spatial information and leads to the loss of crucial image

details. Therefore, people try to come up with ideas to improve perceived resolution by

rising the level beyond which all frequencies are lost while displayed on a screen.

One of the simplest idea is to use tiled multi-projector displays [Majumder and

Brown 2007], such as PowerWalls, which instead of showing for example one 2

megapixels image, show twelve of them increasing the total resolution to 24 megapixels.
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Screenshot Photo ScreenshotPhotoZoom Zoom

Figure 3.5: A photograph of Clear Type text reveals how subpixels are addressed

individually in contrast to the standard scenario where all three RGB component are

either turned on or off.

Such solutions, however, are only practical in case of huge screens where the required

space for building such a system is not an issue. Those are also solutions that will

probably never be available on a consumer-level. Because of this, a much better idea

is to use existing displays. One of such concept is to use the subpixel structure of

LCD displays, where the color of the whole pixel is created by fusing R, G, and B
components (so-called color blending). This idea, called subpixel rendering, increases

the image resolution by breaking the assumption that R, G, or B channels are unified

in a single pixel by controlling intensities of the subpixels independently. If their

arrangement is known, one can use channels from neighboring pixels to increase

spatial resolution. Platt [2000] showed an optimal filtering for liquid crystal displays

(LCD), which was used in the ClearType font technology (Figure 3.5). The resulting

resolution enhancement is limited to the horizontal direction only and works best for

black-and-white text. Subpixel rendering is advantageous for complex images as well,

but saturated colors or naïve compensations of spatial color-plane misalignments may

lead to color fringes at sharp edges, as well as color moiré patterns for high frequency

textures [Messing and Kerofsky 2006]. This is underlined by Klompenhouwer and

de Haan [2003] who found that subpixel rendering shifts luminance aliasing caused

by frequencies over the display’s Nyquist limit into the chrominance signal. For this

reason, optimization frameworks are often used that involve the precise physical layout

of subpixels including inactive or defective subpixels [Messing and Kerofsky 2006].

Interestingly, it is possible to enhance the perceived resolution exploiting the

temporal domain and properties of the HVS. Instead of registering a content with a

subtle camera motion and improving resolution via supersampling techniques, one can

rely directly on temporal processing of the HVS. Krapels et al. [2005] reported better

object discrimination for subpixel camera panning than for corresponding static frames

(independently confirmed in [Bijl, Schutte and Hogervorst 2006]). In their experiments

where relatively poor-quality images, captured by an undersampled thermal imager,

were considered, object discrimination was improved regardless of the subpixel sensor

motion rate, except for critical velocities [Tekalp 1995, C. 13] such as a one-pixel

shift. A similar observation applies to rendering with supersampling where several

images, rendered with slightly differing camera positions, are integrated in order to

gain information.

In other techniques, the advantage of HVS temporal processing is used even further.

In wobulated projectors, multiple unique slightly-shifted subimages are projected
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on the screen using an opto-mechanical image shifter [Allen and Ulichney 2005],

which is synchronized with the rapid subimage projection to avoid flickering. Due to

temporal averaging of the HVS the perceived image resolution and active pixel areas

(otherwise limited by the door grid between physical pixels) are enhanced. A similar

effect is achieved by display supersampling using multiple carefully-aligned standard

projectors [Damera-Venkata and Chang 2009], where also an optimization for arbitrary

(not raster aligned) subpixel configurations is performed.

3.3 Stereo 3D Quality

Due to big movie productions, such as “Avatar”, stereo technology is gaining bigger

attention. However, it is not the first time when 3D productions are so popular. Since

the first stereoscopic movies in 1922 were released, there was one more big “3D boom”

in 50‘s (Figure 3.6). This one, however, turned out to be not very successful as a couple

of years later the number of 3D productions drastically dropped. There were probably

many reasons for it. One of them might be that there was no interesting content to show

in 3D, therefore, the depth impression could not significantly improve the experience

of a standard viewer. Also, there was a lack of necessary techniques for proper stereo

content preparation. Such methods are, however, very important as stereo impression

that we can experience, e. g., in cinema, is only an illusion and many problems with its

faithful reproduction can be observed. Currently, due to the huge development of 3D

display techniques as well as new methods for stereoscopic content manipulations, the

number of 3D productions does not seem to decrease.

In this section, we describe software techniques that enable stereo content ad-

justments either for artistic purpose or to assure viewing comfort. We discuss also

techniques that were developed for a better understanding of visual discomfort, per-

ceived geometry deformation and the overall quality of depth reproduction. Those

techniques require taking into account binocular disparity perception which, as shown

in Section 2.3, is similar to luminance perception. Therefore, we also give an overview

of some techniques for luminance processing that in many cases served as an inspira-

tion for techniques used for 3D content manipulation. We discuss here also techniques

that directly aim for modifying depth. Although they are usually not motivated by 3D

stereo they are related to it.

3.3.1 Luminance processing and models

Luminance/contrast is routinely processed automatically by a camera firmware, while

advanced users apply specialized solutions using specialized software packages that

enable interactive enhancements. Standard techniques include gamma manipulation,

histogram equalization and unsharp masking. More advanced methods rely on multi-

scale detail control, such as multi-resolution edge-preserving decompositions [Farb-

man et al. 2008]. Gradient-domain frameworks enable direct contrast manipulation

[Fattal, Lischinski and Werman 2002], but require solving the Poisson equation for

image reconstruction. Perceptual models of contrast can enable perceptually-linear

contrast manipulation [Mantiuk, Myszkowski and Seidel 2006; Mantiuk, Daly and

Kerofsky 2008].
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Figure 3.6: The plot visualizes number of 3D productions over last 90 years.

Many different techniques for luminance manipulation were proposed in the context

of High Dynamic Range Imaging (HDRI). The most prominent problem in this area is

tone mapping, which deals with images of higher dynamic range than the range that

can be displayed on a regular screen. Tone-mapping is a range-mapping problem where

the signal is luminance in a digital image and the target range is the limited screen

luminance [Reinhard et al. 2010]. Many existing local operators [Farbman et al. 2008;

Li, Sharan and Adelson 2005] are tuned for the best use of dynamic range and enable

multi-resolution manipulation of detail visibility. Notably, it is possible to use certain

illusions in order to enhance contrasts that were compressed. Krawczyk et al. [2007]

suggest a local operator based on the Cornsweet illusion. In a perceptual framework,

they analyze the distortion (i. e., loss) in contrast caused by an arbitrary operator in

various bands and re-introduce contrast when possible via Cornsweet profiles. As the

reintroduced contrast consists of only higher frequency the resulting physical dynamic

range is not changed, but apparent dynamic range of the image can be significantly

improved.

Also several techniques exist to enhance luminance based on depth information

[Luft, Colditz and Deussen 2006; Bruckner and Gröller 2007; Ritschel et al. 2008;

Bezerra et al. 2008]. Those techniques try to make a spatial layout more apparent using

similar techniques as those presented before.

Besides extensive luminance manipulation images undergo different kinds of dis-

tortions due to for example compression which is necessary to enable content transfer

or adjustment for a certain display device. At this point it is important to analyze

the introduced differences to prevent unwanted changes. This led to a number of

techniques that allow image comparison and are known as 2D image quality metrics.

They usually focus on near-threshold [Daly 1993] and supra-threshold [Lubin 1995]

difference discrimination as well as on functional [Ramanarayanan et al. 2007] and

structural [Wang et al. 2004] differences. For example the Visual Difference Metric

relies on the contrast transducer, which represents a hypothetical response of the HVS

to a given contrast [Wilson 1980; Lubin 1995; Mantiuk, Myszkowski and Seidel 2006].

For a more complete survey on 2D image quality metrics we refer to [Wang et al. 2004].
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3.3.2 Geometry

A related method to disparity manipulations is work presented by Weyrich et al. [2007].

They showed how arbitrary three-dimensional geometry can be compressed into the

limited range of an almost flat object like a coin (i. e., bas-relief). To this end, they

exploited a non-linear global operator and a local gradient-domain decomposition

into frequency bands similar to tonemapping presented by Fattal et al. [2002]. In

principle, their manual artistic controls enable the addition of a Cornsweet profile

into the compressed depth, which enhances small depth differences as discussed in

Section 2.3.2.

3.3.3 3D Disparity

Disparity as luminance undergoes different modifications during capturing as well as

post-processing. This, as mentioned in Section 2.3, is mostly due to the fact that naïvly

captured stereo content usually does not produce a desired stereo impression and often

may lead to discomfort caused by large disparities. Also fulfilling an artists’ design

makes disparity manipulation needed in a post-processing step. Additional modification

to the disparity signal can be also introduced in a compression step that is performed

in order to reduce bandwidth for later transfer purposes, e. g., broadcasting. Other

modifications include disparity smoothing that is applied in 3DTV applications to depth

maps derived using computer vision methods to improve the quality of warped images

(e.g., better fill disocclusion holes) [Tam and Zhang 2004]. All those manipulations,

although necessary, may create also disturbing artifacts. Therefore, care has to be taken

while preparing such content. Besides disparity manipulations, the stereo impression

can be directly affected by viewing conditions for which the content was not prepared.

In this section, we present techniques for both, disparity manipulations, as well as

techniques dealing with different kinds of distortions and artifacts of stereo content.

Disparity Manipulations

Disparity manipulation enables fitting the scene’s entire disparity range into a limited

depth range (called comfort zone) where the conflict between accommodation and ver-

gence is reduced [Lambooij et al. 2009; Shibata et al. 2011]. Adjustments can usually be

performed by changing camera parameters during capturing process. Jones et al. [2001]

presented a mathematical framework to manipulate interaxial (i. e., distance between

cameras) and convergence (i. e., angle between optical axes). Recently, similar ap-

proach was proposed for real-time applications by Oskam et al. [2011]. They optimize

camera parameters according to control points that assign scene depth to a desirable

depth on a display device. This allows not only for keeping the scene in desired range

but also for optimization according to an artists’ design. Heinzle et al. [2011] presented

a complete camera rig that provides a intuitive and easy to use interface for controlling

3D impression. Their setup consists of a computational stereo camera, which can alter

its interaxial and convergence during stereo acquisition. An extreme example of stereo

content manipulations is microstereopsis [Siegel and Nagata 2000], where the camera

distance is reduced to a minimum, meaning that a stereo image pair has just enough

disparity to create a 3D impression.
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The above techniques give a powerful tool to capture stereo content. Due to

the view dependence of the stereo impression, also post-processing techniques for

disparity adjustment were proposed. They work directly on pixel disparity maps to

either compress or expand a depth range to respect limitations of a display device

and convey the stereo impression desired by artists. An example of such technique

was presented by Lang et al. [2010]. By the analogy to tone-mapping operators they

proposed similar techniques to those used in luminance processing, e. g., a non-linear

or gradient disparity mapping. For improving stereo impression of important objects in

the scene, they also suggest to use saliency prediction. Later, the problem of computing

adjusted stereo images pairs is formulated as an optimization process that guides the

warping of stereo image pairs while respecting constraints imposed on the resulting

disparity, its temporal changes, as well as saliency-driven image distortions.

3D Image Quality

Since 3D content usually needs to be post-processed, it is necessary to provide an

automatic check of the resulting quality similarly as it is done by luminance metrics.

While it has been recognized that image quality metrics for conventional 2D images

should be extended to meaningfully predict the perceived quality of stereoscopic 3D

images, relatively little research addresses this issue. Meesters et al. [2004] postulate a

multidimensional 3D-image-quality model that incorporates perceptual factors related

to disparity distortions, visual comfort, and 3D image impairments induced by the

camera configurations, compression, and display technology. In practice, all these

factors are considered in isolation and existing quality metrics are mostly driven by 3D

image compression applications. A comprehensible 3D-image-quality metric seems

to be a distant goal. Here, we give an overview of work that considers three kinds

of distortions in stereo content: compression artifacts, 3D image impairments and

misperception.

Compression Artifacts MPEG and JPEG compression artifacts in the color infor-

mation, affect image quality, but have little influence on perceived depth [Seuntiens,

Meesters and Ijsselsteijn 2006]. Sazzad et al. [2009] developed a non-reference stereo-

scopic image quality metric which combines the estimate of blockiness and blur with a

disparity measure based on the difference of a zero-crossing rate between corresponding

blocks in the left and right eye images. The correlation coefficient between the original

and compressed disparity is considered in conjunction with the structural similarity

index (SSIM) [Wang et al. 2004] outcome. In another scenario, the per-pixel Euclidean

distance between the disparities is directly incorporated into the SSIM along with the

existing contrast, brightness, and structure distortion measures. Benoit et al. [2008]

report significant correlation with subjective mean-opinion-score data for stereo images,

when the disparity error is incorporated into standard 2D image metrics in particular

when the SSIM is incorporated.

3D Image Impairments Typical 3D image impairments can have different sources

such as camera configuration, compression or imperfections in display technology.

Most of them are attributed to higher level (cognitive) aspects of the HVS and affect

mostly the 3D appreciation and visual discomfort and are less related to depth per-

ception. Examples of such impairments include distortion of depth plane curvature
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Figure 3.7: Misperception: When viewing conditions correspond to capturing setup

(ortostereoscopic viewing) perceived object P’ appears at the same depth as the one in

the real scene. However, when viewing condition changes (e. g., distance to the screen),

the object is perceived on different depth (P”). This leads to distortions of perceived

geometry.

(incorrect vertical and horizontal parallax for non-coplanar camera/image plane config-

urations), puppet theater effect (visual size distortions due to an object angular size and

perceived distance mismatch), cross-talk (ghosting due to imperfect eye-image separa-

tion), cardboard effect (flat object appearance due to the underestimation of the distance

to the 3D display), shear distortion for non head-tracked displays (correct 3D percep-

tion limited to one viewpoint), picket fence effect and image flipping (vertical banding

and noticeable angular zones in autostereoscopic displays). Meesters et al. [2004]

provide a detailed survey of techniques dealing with 3D-image impairments.

Misperceptions A special case of 3D image impairments is misperception of stereo

content shown on stereoscopic displays (Figure 3.7). It is often caused by a wrong

viewing distance or position. This is because the correct stereo view (ortostereoscopic

view) is achieved only when camera parameters used in the acquisition step match

perfectly the observer position (i. e., viewing distance, position, interaxial). Whenever

those requirements are not fulfilled perceived shapes do not corresponds to the captured

scene and the perceived shape is distorted. This is very common in real world scenarios

where viewers do not stay in one position while looking at display devices. Recent work

by Held et al. [2008] presents a mathematical model for predicting these distortions.
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Figure 4.1: Our method performs an efficient perceptually-inspired temporal upsam-

pling taking advantage of additional data provided during rendering.

The continuous quest for better image quality forces display manufacturers to

enhance contrast, brightness, display size and pixel resolution. At the same time viewers

tend to move closer to the display to enjoy image details due to higher resolution and

contrast, as well as to improve immersion in the visual experience, which arises from

a wider field of view that is covered by the display. This has profound consequences

in terms of the HVS which creates new challenges for display technology as well.

Hold-type blur described in Section 2.2.3 can significantly lower image quality as the

wide field of view increases the angular velocities of moving objects in the image. The

wider field of view increases also the role of peripheral vision, which is tuned through a

specialized visual channel to low spatial frequencies and high temporal frequencies as

required to detect motion (and timely react for the presence of predators) [Burr 1981].

This increases the viewer’s sensitivity to image flickering, which becomes readily

visible, in particular for bright displays. Therefore, while designing new display

devices and algorithms accompanying them, those issues need to be taken into account.

To overcome those limitations new low-cost high-refresh-rate (100+ Hz) display

devices have recently become available on the consumer market and quickly gain on

popularity. Also new desktop displays such as the Samsung 2233RZ and Viewsonic

VX2265wm FuHzion (120 Hz), besides their primary application in 3D stereo, aim

to reduce the perceived blur created by moving objects that are tracked by the human

eye. In this case the improvement is only achieved if the video stream is produced at

the same high framerate (i. e., 120 Hz). As described in Section 3.1 such content is

rarely available. Therefore, many different strategies for increasing temporal resolution

45
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were developed. As the problem is difficult, current solutions always offer a trade-off

between efficiency and quality. Many of those techniques can provide superior quality

but their efficiency is too low for producing 120 Hz content when only 8 ms can be

spent on a single frame computation. This is expected to be an even more important

issue for the newly appearing Super-HD displays (4096× 2160 resolution). Other

techniques, as those included in TV-sets, are very efficient; however quality of resulting

sequences often reveal some artifacts, including possible flickering. Another problem

is a lag introduced by most of those methods, which is caused by the fact that the

knowledge of future frames is usually required to produce additional frames. This is a

big issue in interactive applications such as video games.

Although recent desktop displays can be fed externally with 120 frames per second,

and do not rely on an internal frame replication described in Section 3.1. The question

then arises how to efficiently synthesize frames specifically for displays of this type so

they lead to a sharp and convincing image when viewed by a human observer. In this

chapter we present an approach that finds a good trade-off between existing solutions.

The chapter is structured as follows. First, in Section 4.1, we give a short overview

of our approach. Then, we describe our technique in Section 4.2 and give imple-

mentation details in Section 4.3. To check how our upsampling technique performs

we conducted an experiment which we describe in Section 4.4. This is followed by

conclusions in Section 4.5.

4.1 Overview

In order to reduce hold-type blur we propose to upsample the stream of rendered images

using the pipeline depicted in Figure 4.2. Our solution is fast and produces additional

frames at a scene-independent cost due to an efficient frame warping which takes

advantage of 3D information (e. g., depth, motion flow, occlusions) generated as a by-

product of GPU rendering. The additional information allows us to improve the quality

of in-between frames and accelerate their computation. Our method avoids artifacts

produced usually by solutions embedded in TV-sets, where motion flow needs to be

estimated based on input video stream (Section 3.1.1). We also perform extrapolation

instead of interpolation, which solves the problem of possible lag.

In order to extrapolate one (or multiple) in-between frames, we use motion flow to

warp the previously shaded result. As such extrapolation is fast, it may lead to visible

artifacts. We remove them by locally blurring extrapolated frames where required.

This step is inspired by the idea proposed by Chen et al. [2005] as well as the motion

sharpening effect used in compression (Section 2.2.4). The local blur hides artifacts if

warping fails and makes extrapolation sufficiently accurate. The lost high frequencies

are compensated relying on Bloch’s law (Section 2.2.1). In the context of high-refresh-

rate displays, where subsequent images are fused by the HVS, the law suggests that a

feature displayed with enhanced intensity in a single frame is perceived in the same way

as the same feature present in two frames, each with a halved intensity. We exploit this

observation to maintain local average power in each frequency component and amplify

high frequencies in fully rendered frames to compensate for the blurred (warped)

frames that follow. Exploiting in an inexpensive way those perceptual findings provides

naturalness and efficiency.
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Figure 4.2: Our pipeline, from left to right: To extrapolate one (or multiple) in-between

frames, we use motion flow to warp an originally rendered image into an in-between

frame, that is then locally blurred to hide artifacts caused by morphing failures. Finally,

we compensate for the lost high-frequencies by enhancing them in originally rendered

frames where necessary.

4.2 Temporal Upsampling Pipeline

In this part we present individual components of our temporal upsampling technique.

First we provide a description of fast warping to later concentrate on the artifacts

removal.

4.2.1 Motion flow

Contrary to motion flow from videos, we can extract motion flow during rendering. The

graphics card has knowledge about object displacements, which is different from special

displays to combat hold-type blur because they need to reverse engineer imperfect 3D

motion via optical flow. By taking the difference in position for every vertex, we can

compute perfect motion flow and rasterize it into a buffer. While higher-order motion

models are possible, a linear assumption proved sufficient in our tests.

4.2.2 Morphing

Morphing takes the original frame and maps every pixel into its new predicted position,

but this can be costly. In our implementation, we make this mapping piecewise linear

by mapping a subset of pixels – a grid – and extrapolating the deformation over this

grid.

Morphing might map multiple source pixels to a single destination pixel. We can

resolve such ambiguities, by relying on depth, extracted just like the motion flow. Note

that such information is not available to image-based approaches such as those used by

TV manufacturers (Section 3.1.1).

We will show that blur can remove inconsistencies to a large extent, but morphing

a fixed resolution regular grid can lead to significant artifacts that are not easily fixable.

E. g., diagonal edges, or discontinuities can fall between grid vertices, such as depicted

in Figure 4.3 (left). Our solution to this problem is to snap the grid to deformation
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discontinuities (i. e. optical flow) in the original domain Figure 4.3 (middle), before

morphing them to their new location in the morphed domain as seen in Figure 4.3

(right).

Figure 4.3: To warp the original (Left) into the in-between frame (Right), we proceed

in two steps. First, a uniform grid (Left) is snapped to discontinuities in motion flow

(Middle). Second, those vertices are warped into a new location (Right). By doing so,

discontinuities in motion are preserved, which is an important perceptual cue. Further,

conventional depth buffering resolves overlaps (White area) by comparing depth values

from the original frame to a depth buffer in the target frame before writing.

Preferably the snapping is done to nearby edges, hereby trading of regularity

against adaptivity. Vertices on the image border, are kept at their location in order to

prevent undefined regions, e. g., black borders. Note, that this warping does not lead

to disocclusion holes, as it is usually the case for reprojection. This makes special

hole-filling strategies unnecessary.

4.2.3 Blur

Morphing can result in artifacts, because, even though we handle new occlusions using

depth values, disocclusions remain a challenging problem. Disoccluded surfaces are

not present in the original frame and selective re-rendering is expensive for rasterization,

even when using masking techniques. Especially, the entire geometry would need to

be processed again.

Fortunately, the possibility to interleave high-frequency and low-frequency content

allows us to improve upon these problems. As small features that appear due to

disocclusion would result in high-frequency content, consequently, by blurring the

image with a Gaussian kernel, we hide potentially introduced artifacts caused by

missing information.

The downside is that such an operation changes the frequency content of the image

and we need to compensate by adding back high frequencies. This is difficult for

in-between frames due to the lack of information, but it can be done for the original

image by subtracting a blurred version. Exploiting the HVS incapability to detect

interleaved high- and low-frequency content at high refresh-rates allows us to produce

a visually equivalent output by adding increased high frequencies to the original frame

only.
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4.2.4 Gamma Correction

We need to ensure that the increased frequencies lead to the correct appearance when

integrated over time by the HVS. In theory, if we use N −1 in-between frames, it is

sufficient to scale the high-frequency layer by a factor of N before adding it back. In

practice, the process is slightly more involved because we need to also counteract the

display’s gamma curve. For this derivation, we will assume that the image is stationary,

and we denote the high- and low-frequency layer H,L, respectively, γ the gamma

exponent of the display, and Ĥ the modified detail layer needed to ensure a correct

compensation for the blurred in-between frames. Over N frames the result should,

energy-wise, be equivalent to N(H +L)γ. For our N −1 in-between frames, we have

(N −1)Lγ.

N(H +L)γ = (L+ Ĥ)γ +(N −1)Lγ ↔
Ĥ = (N(H +L)γ − (N −1)Lγ)

1
γ −L

Only for γ = 1, we get Ĥ = NH (a simple scaling).

4.2.5 Selective Blur

Although it is in theory desirable to apply the blur to the entire image [Chen et al. 2005],

some problems can make it preferable to apply the blur selectively.

Introducing blur to in-between frames poses two problems. First, the modified

original frame can saturate and exceed the display’s dynamic range. Second, we might

not always be able to reproduce perfect black levels when relying on blurred frames.

Because the blur makes neighboring pixels bleed into black areas, these black pixels

can contain grey values in the blurred frames that make the black pixels appear slightly

brighter. Although these two problems might at first glance not be related, both are

a consequence of physical limitations. For saturation, we exceed the upper bound

of displayable brightness, and to compensate for the brightening of black pixels, we

would need to be able to display negative values in the enhanced original frame.

To address these issues, we perform a simple analysis after having split the frame

in its low- and high-frequency content, as shown in Figure 4.4. We verify whether

we cross the boundaries of the displayable dynamic range and, if this is the case, we

will reintroduce some of the high-frequency content in the low-frequency layer. If the

original pixel is darker than the low-frequency counterpart, we keep the original. If the

enhanced original exceeds the limits of the dynamic range, we subtract the exceeded

content and shift it to the low-frequency layer. Energy-wise and, thus, integrated over

time, these operations deliver the correct result. It might seem necessary to propagate

the locations of such modifications to the following in-between frames in order to

correctly compensate for these changes, but it is unnecessary because decisions are

based on luminance values only.

For disocclusions and strong deformations, the warped grid content cannot be

reliable and any high-frequency information increases the likelihood of artifacts. Thus,

we maintain these regions blurred and use a smooth-step function that maps grid

distortion to blur strength, to blend between the true low-frequency content and our

enhanced version.
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Figure 4.4: Selective blur: The first row presents the situation, where blur is introduced

every frame and full compensation is not possible due to limited dynamic range. The

second row depicts, how the problem is solved by shifting some content from the

original frame into the blurred frames.

4.2.6 Limitations

Some limitations for this approach have to be kept in mind.

Motion Flow

Pixels affected by transparency (e. g., transparent materials, simulated motion blur

or depth of field), do not have a simple motion flow. The mapping of such pixels

to multiple motion flows and the introduction of strategies for specular materials

(e. g., glass), or meshes with changing topology are left for future work.

Morphing

We assume a certain predictability and linearity of motion flow over the in-between

frame. Consequently, discontinuities in velocity, might not be well represented, leading

to motion that smears over the in-between frame. Our blur somewhat counteracts this

phenomenon and the potential problem was not observed in practice, even when the

actual motion is highly non-linear (e. g., rotating fan). For more irregular motion this

problem is further reduced because of limited tracking capabilities of human observers

in such scenarios.

4.3 Implementation

Our upsampling is implemented in vertex and fragment shaders. While current GPUs

are very fast, it is still challenging to perform frame extrapolation in a few milliseconds.

Therefore we describe implementation details in this section.
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4.3.1 Morphing

We morph frames by warping a two-dimensional distorted (snapped) grid of N ×M
vertices. To respect discontinuities we want to translate each vertex from its regular

grid position to a nearby discontinuity (maximal gradient) in the motion flow. For

this, each vertex examines a small neighborhood around its original position (typically

8×8). To avoid snapping two vertices to the same location, we choose the original

grid such that no two neighborhoods overlap, but the entire image is covered.

0 1 2

Figure 4.5: Finding the maximum gradient in a neighborhood: At level 0 of a 4×4

grid, different gradients are denoted as vertical bars. Going to level 1, the maximum

gradient (vertical bar), as well as a pointer (blue arrow) to the location of the maximum

(blue square) is stored on a 2×2 grid. Level 2 stores the maximum and its location.

We find the maximum value and its location by relying on a special form of

MIP map (Figure 4.5). For level 0, each pixel stores the gradient magnitude and its

coordinates. For successive levels i, we recursively combine four pixels from level i−1.

We find the maximum gradient value and copy the entire entry to level i−1. The result

is a traditional max MIP map that additionally stores where the maximum occurred.

In practice, we encode a relative position with respect to the vertex that will search

the corresponding neighborhood. This allows us to quantize the information, 2×5 bits

for position, and 6 bits for gradient magnitude, in a total of 16 bits per pixels. This

fine-grained parallel strategy leads to a speedup of a factor of two over a sequential

loop in the vertex program to find the maximum.

After finding the maximum, we snap the vertex to this location and adjust its texture

coordinates to reflect the new position. In this way, the grid is warped and respects

discontinuities, but the texture is still undistorted. The distortion only comes from the

motion flow, which is then additionally applied to the vertex position.

While we allow (and intend) fold-overs, we still draw a closed, connected grid

of N ×M vertices from an OpenGL vertex buffer (2×16 bit per vertex) to achieve a

N − 1×M − 1 tile grid. Further, we enable the depth test and pass depth from the

original frame to resolve occlusions at fold-overs.

4.3.2 Blur

Instead of employing a full gaussian blur, we use a MIP map with a recursive 3-tap

binomial weight filter. We then read the MIP map at a higher level using tri-cubic

reconstruction. As the blur occurs after tone mapping, it is done using 8 bit RGB

values.



52 CHAPTER 4. TEMPORAL UPSAMPLING

4.3.3 Motion Flow

To compute high-quality per-pixel motion flow, each vertex’ position is transformed

into homogeneous clip space at time t and time t +Δt. During rasterization, the two

homogeneous vertex positions are projected into Euclidean space and their difference

produces the optical flow for that pixel which avoids problems at the clipping planes.

Extrapolating frames using previous frame motion flow for high velocities and

complex motion is difficult. Fortunately, the tracking performance of human observers

is limited and allows us to bound the deformations. Based on the findings in [Daly 1998]

tracking is possible up to 80 deg/s.

According to these findings, we simulate the loss of tracking accuracy by a simple

function f . For 70 deg/s we assume perfect tracking ( f (70) := 1), for 90 deg/s no tracking

( f (90) := 0). Using a cubic smooth-step curve ( f ′(70) := f ′(90) := 0) gives good

overall results. We extend beyond 80 deg/s because Dali et al. measured random motion,

whereas 3D scenes usually exhibit more coherence. In fact, velocity damping is usually

preferred, even over 120 Hz (see next Section), as it tends to reduce blur (in this case

the motion blur due to imperfect tracking).

4.3.4 Performance

Our implementation allowed making our temporal upsampling very efficient. Time

needed for generating two additional frames is significantly lower than 8 ms, which is

time budget for one frame at 120 Hz. Table 4.1 presents performance numbers for our

technique on an 3.0 GHz Core 2 Duo CPU with an NVIDIA GTX 260.

Scene Motion Flow Morph Blur Total

Sponza 0.40 ms 1.92 ms 3.34 ms 5.66 ms

Tower 1.64 ms 1.95 ms 3.36 ms 6.95 ms

Fan 0.33 ms 1.86 ms 3.38 ms 5.57 ms

Trees 1.00 ms 1.93 ms 3.38 ms 6.31 ms

Camel 0.49 ms 1.75 ms 3.37 ms 5.61 ms

Table 4.1: Performance breakdown for various scenes (Figure 4.6) when upsampling

40 Hz to 120 Hz (resolution is 1024×1024). If rendering takes more than half of the

total upsampling time to produce one frame, our operator is useful as it produces two

frames at the same time.

4.4 Experimental Validation

We conducted a series of psychophysical experiments to understand how our temporal

upscaling compares to standard rendering methods. In total 5 experiments were

conducted. First, we investigated blur-reduction (“Rating” experiment) and possibly

introduced artifacts (“Artifacts"). We also checked the impact of our upsampling game-

related task performance (“Game”). In “Stereo vision" experiment we showed that our

technique could be used for generating additional views for example for stereo-view
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synthesis. In this section, we present the study design with statistical data analysis as

well as details on participants and apparatus.

4.4.1 Participants

14 participants with normal or corrected-to-normal vision took part in the “Rating”

and “Artifacts” experiments. Only a subset of 10 participants took part in the “Game”

and “Stereo Vision” experiments, as well as additional study over the “Camel” scene.

Subjects were compensated for their efforts with a small fee (14 $). Participants were

recruited from the university campus and were mostly students of computer science.

Subjects were naïve regarding the goal of the experiment and inexperienced in the field

of computer graphics.

4.4.2 Materials and Apparatus

All stimuli were presented on a 22-inch (diagonal) Samsung 2233RZ 120 Hz display

of resolution 1680×1050 that was connected to a personal computer with an NVIDIA

GTX 260 running in the synchronization mode. The monitor was viewed by the

subjects orthogonally at a distance of 60−80 cm. The video sequences and images of

resolution 512×512 have been used in all studies except “Game”, where the full display

resolution has been used. Experiments “Rating” and “Artifacts” required that three

sequences are simultaneously shown next to each other in a horizontal arrangement.

4.4.3 Procedures

The participants were seated in front of a monitor running the experimental software in a

room with controlled artificial lighting. They received standardized written instructions

regarding the procedure of the experiment. In all experiments (except “Game”) the time

for each trial has been unlimited. In case of the “Game” experiment a unlimited-time

practice session has been offered until the subject felt comfortable with the game.

In our study we did not have any restrictions concerning the experience of partici-

pants. They all played video games before but of course the level of experience varied.

Although Green et al. [2003] have shown that video games can modify visual selective

attention, in our case, there seemed to be no direct correlation between detection of

artifacts and the level of video game experience. It is important to mention that all

subjects who noticed problems with artifacts, reported only slight differences between

our upsampling and the original 120Hz rendering. This can be explained by the fact

that our method, which upsamples 40 Hz signal, has significantly less information over

time than the original 120Hz rendering.

Rating

The goal of the first experiment was to judge the amount of perceived blur by rating

three rendering methods: our temporal upsampling from 40 Hz to 120 Hz, and native

rendering with low (40 Hz) as well as high (120 Hz) framerate. All three pre-rendered

sequences have been simultaneously shown on the screen next to each other in a
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Figure 4.6: The stimuli used. The “Sponza” scene has moderate geometric and texture

detail. “Tower” has many occlusions and disocclusions are difficult to extrapolate

in image space. “Fan” shows rotational movement that is difficult to extrapolate.

Even more heterogeneous movement is found in the “Camel” mesh animation. Many

occlusions and disocclusions occur in the “Tree” scene. The “Game” scene was used

to measure task performance.

randomized order. Subjects had unlimited time, during which ≈ 20 s long sequences

were looped, to rate the perceived amount of blur in the scale from 1 to 9 for each

rendering method. The stimuli depicted in Figure 4.6, covering a range of possible

applications, such as computer games or medical and technical visualization have been

used. We diversified also stimuli in terms motion complexity, which decides upon the

eye tracking efficiency.

Figure 4.7 as well as Tables 4.2 and 4.3 summarize the obtained results. Inde-

pendent ANOVA tests computed for each stimuli revealed statistically meaningful

differences in the perceived amount of blur between rendering methods. Adjusted pair

wise contrasts (the paired sample t-test with the Bonferroni correction) indicate that

for all scenes (except “Camel”, which we included to the study as the special case)

our method performed significantly better with respect to native 40 Hz rendering and

comparably to 120 Hz rendering (in the latter case a statistically significant difference

has only been found for the “Sponza” scene).

We included one special scene (“Camel”) where it is virtually impossible for an

observer to track the fast and complicated leg motion. In this case no hold-type blur is

present and all three tested methods performed similarly. Our goal was to show that

our method is failsafe for untrackable motion, as it locally reduces morphing based

on a prediction of poor eye tracking (refer to Section 4.3). Our rendering outcome is

perceived comparable to native 40 Hz rendering, whereas 120 Hz, due to the lack of

tracking, results in perceived distinct copies of legs at discrete positions (like a strobing

effect in undersampled motion blur rendering [Sung, Pearce and Wang 2002]), which

even reduces the overall contrast. To investigate this case further, we informally asked

10 subjects to report on similarity in the appearance of our and 120 Hz sequences with
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Figure 4.7: Quality rating for 5 scenes. The dark horizontal lines under each scene

indicate no significant statistical difference (series of t-test). Error bars represent ±1

SEM (standard error of the mean).

ANOVA

Scene F(2,26) R2 p
Sponza 302.07895 .93936 <.00001

Tower 38.50120 .66380 <.00001

Fan 24.08909 .55264 <.00001

Trees 43.10340 .68852 <.00001

Camel 2.06101 .09559 .14110

Table 4.2: “Rating” experiment: The table contains F-, p- and R− squared values

for ANOVA applied for each scene independently to rating data for our temporal

upsampling from 40 Hz to 120 Hz vs. 120 Hz and 40 Hz native rendering. R− squared
values are computed as a ratio of the explained sum of squares to the total sum of

squares.

Our vs. 120Hz Our vs. 40Hz

Scene t(13) p Cohen’s d t(13) p Cohen’s d
Sponza -2.70153 .011988 -1.021081 16.86200 <.00001 6.373233

Tower -1.54022 .135592 -.582147 5.92260 <.00001 2.238529

Fan -.64210 .526431 2.130014 5.63549 <.00001 2.130014

Trees .08069 .936312 .030495 10.17879 <.00001 3.847221

Table 4.3: “Rating” experiment: The table contains t- and p- values as well as the

effect size (Cohen’s d) for pairwise comparison of our method with respect to 120 Hz

and 40 Hz native rendering are given. Note that for the “Camel” scene already ANOVA

(Table 4.2) shows that there is no main effect.

respect to a selected static frame. The subjects reported better match in similarity for

our method. This observation may suggest that brute-force increasing of the framerate

may not always improve the animation appearance, and local frame processing that

anticipates the eye-tracking ability is required.
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Artifacts

The next important question is whether our method does introduce artifacts as a side

effect of blur reduction. In a second experiment that immediately followed the first

one, the subjects were presented the same animation sequences again, but this time

our method was singled out by a red frame. The subjects were asked whether they

see any artifacts in our sequence which they cannot see or are much weaker in the

other two sequences. By asking this specific question and giving unlimited time for the

answer we wanted to ensure that the subjects carefully analyze the presence of possible

artifacts. The side-by-side comparison eases the detection of differences significantly.

Further, we did not specify any kind of possible artifacts to not bias the subjects in

their observations. The vast majority did not report any observations for any of the

sequences (over 82 % responses). Apart from isolated remarks on the differences in

shadows (justified), contrast and color changes (the latter two, mentioned in 3 % of

the cases, seem to be less grounded), all other comments addressed various aspects of

temporal aliasing. The subjects reported that such artifacts, due to undersampling, are

slightly more pronounced in our rendering with respect to 120 Hz sequences. Temporal

aliasing has been mostly reported (in all but one cases) for “Sponza”, “Tower”, and

“Trees” scenes, where the camera is panning and natural supersampling of pixels fused

by the eye is achieved for 120 Hz rendering. Perhaps, this effect can explain the

slightly lower rating of our method with respect to 120 Hz as can be seen in Figure 4.7,

although aliasing was not directly related to hold-blur rating in this experiment. Similar

observations were not made in the context of 40 Hz rendering, probably due to the

excessive hold-type blur.

We conclude from those findings that our temporal upsampling is comparable to

120 Hz rendering in terms hold-type blur reduction and overall animation appearance,

but with significantly less computational effort. Our technique does not cause additional

aliasing with respect to 40 Hz rendering and the slight difference to 120 Hz was only

seen by a few subjects.

Game

We finally demonstrate that our approach can lead to a better task performance by

a simple game (refer to the “Game” scene in Figure 4.6), in which the participant

is asked to tell apart two classes of moving targets. We use a three-dimensional

Landolt circles as target classes, which we show in a randomized fashion and ask the

participant to press one button when a target is a closed circle or a different button if it

is an open circle. Not pressing a button with an object in sight is counted as failure.

Pressing a button without an object in sight is ignored. We investigated four rendering

scenarios: native rendering with refresh rate of 40 Hz, 60 Hz, and 120 Hz, as well as our

temporal upsampling from 40 Hz to 120 Hz. 10 subjects took part in the experiment.

On average the scores obtained by the subjects playing using our method were 45 %

better than those for original 40 Hz, 12.7 % better than for 60 Hz and 3.3 % worse than

for 120 Hz (Figure 4.8). The statistical analysis with ANOVA over the scores for each

method reveals the main effect (F(3,27) = 17.07, p < 0.00001). Adjusted pair wise

contrasts (the paired sample t-test with the Bonferroni adjustment) indicate statistically

significant differences between our approach and 40 Hz (t(9) = 7.71, p < 0.001) as

well as 60 Hz (t(9) = 4.25, p< 0.01). No effect has been found when our technique has
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Figure 4.8: Game statistics: The left plot presents the mean value of scores for all

methods with ±1 standard error of the mean (SEM). Such scores include correctly

identified Landolt shapes as well as the full circles (toruses). The plot on the right

shows only the mean value of the successes of Landolt shape detection with ±1 SEM.

been compared to 120 Hz (t(9) =−2.18, p > 0.05). Details can be found in Table 4.4.

We conclude, that the hold-type blur effect can decrease task performance while our

approach can restore it to a quantifiable extend.

Refresh rate t(9) p Cohen’s d
40 Hz 7.71 .00005 2.29894

60 Hz 4.25 .01000 1.02826

120 Hz -2.18 .12062 -.54211

Table 4.4: “Game” experiment: The table presents outcome of t-tests performed over

the subject scores obtained for our temporal upsampling from 40 Hz to 120 Hz vs.
native rendering with refresh rates 40 Hz, 60 Hz, and 120 Hz, respectively.

Stereo vision

Another application of this work is synthesis of stereo image pairs out of a single

image, by warping from central view into the view of each eye. This follows the idea

described in Section 3.1.3 that many temporal upsampling methods can be adopted for

new view generation. Using our technique, as illustrated in Figure 4.9, we can perform

the stereo view synthesis within a few milliseconds. In Chapter 8, we describe a more

advanced technique for stereo image synthesis, which is also inspired by our temporal

upsampling method. Here, we test whether applying our upsampling directly to new

view creation gives satisfactory results.

For simplicity we used anaglyph stereo, but other passive and active stereo tech-

niques would work. 10 subjects in our study were shown a video and were then allowed

to freely navigate in a virtual environment. They were asked to compare the synthesized

stereo image with the ground truth rendered for two eyes. All subjects have difficulties

in perceiving differences between the two approaches.
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Figure 4.9: Generating stereo frames using our upsampling.

Optical Flow Experiment

We did not include any practical solution relying on optical flow computation used

in modern TV sets. The problem is that such algorithms are not revealed and it is

currently not possible to send our output into any available TV because it cannot be

externally fed with 120 Hz sequences. Therefore, we decided to experiment with one of

the state-of-the-art optical flow techniques proposed in [Zach, Pock and Bischof 2007].

The technique is of significantly lower performance than ours (about 30 Hz on a modern

GPU with a 5122 resolution). In a precomputation, we interpolated in-between frames

based on the two nearest keyframes, to obtain 120 Hz sequences. We did not include

such obtained sequences in our study as visual artifacts have been readily visible

(Figure 3.1). Further, such interpolation always implies a one-frame lag.

Comparison to other methods

In our experiment, we did not compare our method to all those described in Section 3.1.

Comparing to black data insertion or backlight flashing is currently impossible due

to technical reasons. Refresh-rates above 200 Hz are needed and, even though such

TV sets are available on the market, they cannot work with more than a 60 Hz input

signal. Further, some general drawbacks of these solutions exist (e. g., brightness

and contrast reduction). Nevertheless, it could be interesting to combine our solution

with those strategies in the future. We also did not compare to motion-compensated

inverse filtering because such solutions cannot recover frequencies that are lost by

the hold-type effect. Only high frequencies can be enhanced (unsharp masking) to

slightly improve the perceived sharpness. We found that, nowadays, the best methods

are those based on frame interpolation. For this reason, we compared our method to

state-of-the-art implementations of optical flow, which are more accurate than those

available in TV-sets. To make our study more challenging we compared our method

to the ground truth and showed that our upsampling from 40 Hz to 120 Hz and the

original 120 Hz rendering are almost indistinguishable in terms of blur.

4.5 Conclusions

In this chapter, we presented an efficient GPU-based upsampling approach that can

reduce hold-type blur significantly for 3D content such as video games or animations.
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An interesting avenue of future work is to implement our solution in a small hardware

device. Alternatively, our technique could optionally use a cheaper secondary GPU

to perform the upsampling task. Combinations of temporal with spatial upsampling

or spatial superresolution are worth investigating. In Chapter 8, we show how such a

combination can be used for the purpose of stereo images synthesis.

After publishing our technique new solutions for temporal upsampling were pro-

posed. Yang et al. [2011] presented a fast interpolation technique, which uses a

fixed-point iteration to find correct mapping of originally computed pixels to interpo-

lated frames. This technique, however, introduces lag and aims for lower framerates,

e. g., expanding a signal from 15 Hz signal to 60 Hz. Our method could be used as a

complementary step for further framerate expansion. Recently, Bowles et al. [2012]

have combined our mesh-based approach with the fixed-point iteration idea. They also

presented new applications of those techniques, e. g., motion blur or depth of field

rendering.
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Figure 5.1: Depicting fine details such as hair (left), sparkling car paint (middle)

or small text (right) on a typical display is challenging and often fails if the display

resolution is insufficient. In this work, we show that smooth and continuous subpixel

image motion can be used to increase the perceived resolution. By sequentially

displaying varying intermediate images at the display resolution (as depicted in the

bottom insets), subpixel details can be resolved at the retina in the region of interest

due to fixational eye tracking of this region.

Spatial resolution, although often affected by the temporal resolution, is considered

as one of the most important image qualities. This is probably due to details that we

can observe in the real world and wish to reproduce on a display. As described in

Section 3.2.2, today’s capturing as well as computer graphics rendering techniques

can provide highly detailed content; however, the image-display stage usually ruins

the visual effect. This is particularly striking for smaller devices, which have recently

gain popularity, and where resolution is often very limited. Although in many cases,

scrolling or zooming may allow for details exploring of larger images, seeing the whole

image or larger parts in full detail is often more appealing.

In the previous chapter we showed that in order to achieve high quality content

it is not necessary for each frame to be of the highest quality (i. e., the selective blur

helped to solve the problem of hold-type blur and achieve the quality of ground truth).

Therefore, it is interesting whether quality of images cannot be improved further by

careful and individual computation of each frame. In this chapter, we show that it is

possible, and skillful frame preparation can improve quality of presented content even

beyond the capabilities of a display device.

In this chapter, we present a novel technique for apparent resolution enhancement

which makes use of high-framerate displays and is based on temporal integration

61



62 CHAPTER 5. APPARENT RESOLUTION ENHANCEMENT

properties of the HVS. Achieving higher resolution on lower resolution devices is

interesting not only in the context of portable devices. The problem of resolution is

bigger when large displays and small viewing distances are considered. Such situations

become more common nowadays. Also, the problem of energy consumption, which is

associated with increasing pixel resolution, makes energy-efficient high-refresh rates

together with additional software solutions a good alternative for achieving enhanced

resolution. In particular, the upcoming OLED technology will make another step in

this direction enabling refresh rates of thousands of hertz.

The chapter is structured as follows. First, we give an overview of our method in

Section 5.1. In Section 5.2, we introduce a model of temporal integration which is later

used in the algorithm described in Section 5.3. Our apparent resolution enhancement

technique addresses also the problem of flickering as detailed in Section 5.4. In

Section 5.5, we evaluate our method in a perceptual experiment before discussion and

conclusions in Sections 5.6 and 5.7 respectively.

5.1 Overview

In this part of the dissertation, the problem of several input image pixels that map to

the same display pixel is addressed. We want to present them to the observer without

applying detail-destructive resolution adjustments. Our main idea is to transform a

high-resolution input image into N images of the target display resolution (Figure 5.2),

that we call subimages. This is done assuming a certain motion of the original image

on the screen. We then render the subimages sequentially on a high-refresh-rate display

(120 Hz). At the end of each rendering cycle we apply a shift, which corresponds to a

displacement of the original image made during the time of N frames, and restart the

process from the new position. The result gives the impression of a smooth motion.

When an observer focuses on an interesting image detail, the eye will track the feature

and SPEM (Section 2.2.2) of matching velocity is established. This is critical for

our approach to work because then the subimage details are consistently projected to

predictable locations of the retina. By exploiting the integration in the human eye (both

temporal, via quickly displayed subimages, and spatial, via rigid alignment of moving

and retinal images), the effect of apparent resolution enhancement is achieved. As we

rely on a sequential display of subimages, which potentially causes temporal flickering,

we analyze the flickering perceptibility specifically for viewing conditions that are

relevant for our technique, and apply a flickering reduction step to avoid possible

problems.

Our problem is in some sense an inverse problem with respect to super-resolution

image reconstruction (Section 3.2.2), where low resolution images are given and the

goal is to reconstruct missing high spacial frequency content. We consider decompo-

sition of high resolution image, where the high frequency content is available, into

subimages in order to improve the quality of finally perceived images. On the other

hand, display supersampling methods described in Section 3.2.2 are similar to our

approach. In both cases, high resolution images are needed and the problem is how to

decompose those images into subimages, which, when combined either on the screen or

on the retina appear as close as possible to their high resolution counterpart. However,

instead of using customized setup, we aim at a single desktop display or projector

with a limited resolution and fixed pixel layout. Our method works best for displays
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Figure 5.2: Fixational eye tracking over an region of interest in combination with a low-

resolution image sequence leads to an apparent high-resolution image via integration

in the retina.

with high framerate (e. g., 120 Hz), which are becoming affordable due to rapid gain in

popularity of stereoscopic 3D display technology.

5.2 Model

In this section we describe our model of the HVS temporal integration, which is later

used for subimages optimization. We do it in a couple of steps. First, we concentrate

on a simple case of a single receptor and a constant velocity. Then, we use this model

to predict the perceived image for arbitrary subpixel images to later show how an

optimization process can be used to transform a high-resolution input into an optimal

sequence of subimages.

5.2.1 Photoreceptors

The light response of the human photoreceptor is a well-studied issue by neurobio-

physicists. Recently, van Hateren [2005] presented a complete model describing the

response characteristics of a single cone stimulated by a light signal. Later, this model

was used for encoding high dynamic range video [van Hateren, 2006]. In our work, we

need to rely mostly on psychophysical findings, which take into account the interaction

between photoreceptors as well as higher-level vision processing.

One particular element is the CFF, introduced in Section 2.2.1. The eye has a certain

latency and rapidly changing information is integrated over a small period of time

which depends on the CFF. In most cases, we used a 120 Hz screen and displayed three

subimages, before advancing by one pixel and displaying the same three subimages

again. Hence, each subimage sequence takes 1/40 of a second. Although this frequency

is generally below the CFF and a special processing is needed (Section 5.4), 40 Hz is

usually close to the CFF in our context. Higher framerates would allow us to add even

further subimages. We detail these points in Section 5.4 and assume for the moment

that the subimage sequence is integrated by the eye.
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5.2.2 Receptor vs. Changing Image

Human visual system is very sensitive to any motion present in the real word. Therefore

SPEM has no problem with compensating for the moving picture on the screen enforc-

ing on eyes proper speed (Section 2.2.2). First, we investigate the retinal response for a

standard moving picture observed under such conditions. In contrast to the real world

where, during tracking, the signal arriving on a photoreceptor is basically constant, the

situation is different on today’s displays. A single frame is usually displayed over an

extended period of time (hold-type displays) or multiple times (general high-refresh

rate screens) instead of flashing the information only once (CRT displays). Thus, for

an insufficient frame rate, the eye movement over the screen mixes neighboring pixel

information. As a consequence, tracking of screen elements leads to the undesirable

hold-type blur. In our case, we will make use of this observation to increase the

perceived resolution.

To understand the effect, let’s derive a simple mathematical formulation. We first

consider a static photoreceptor with an integration time of T that observes a pixel

position p of an image I. If I changes over time and is thus a function of time and space,

the response is given by
∫ T

0 I(p, t)dt. If the receptor moves over the image during this

duration T on a path p(t), the integrated result is:

∫ T

0
I(p(t), t)dt. (5.1)

5.2.3 Retina

In order to predict a perceived image, we need to make simplifying assumptions about

the layout of photoreceptors on the retina. While the real arrangement is complex and

non-uniform [Curcio et al. 1990, Figure 2], we assume a uniform grid-aligned position-

ing with a higher density than the image resolution. The latter assumption reflects that

in the dense region of the fovea several receptors observe a pixel (Section 2.1).

5.3 Resolution Enhancement

Our goal is to use the temporal domain to increase spatial information and, hence,

to enhance the apparent resolution. Unfortunately, as indicated by Eq. 5.1, it is not

possible to increase the resolution of a static image without eye movement. In such a

case, neighboring receptors that observe the same display pixel also share the same

integrated information (Figure 5.3, cases A,B).

Precisely, this observation implies that for a given time t0, I(p(t), t0) is constant

for all p(t) in the same pixel and I(p(t0), t) is constant during the time that we display

the same pixel intensities. Therefore Eq. 5.1 becomes a weighted finite sum of pixel

values:
T

∑
t=0

wtI(p(t), t). (5.2)

This equation reveals two crucial elements. First, the simulation can be achieved

via a simple summation which will allow us to apply a discrete optimization strategy.
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Figure 5.3: Spatio-temporal signal integration. Left: Two pixels (yellow and blue

square) covered by receptors (circles). Right: Intensity response of receptors A–E over

time for changing pixel intensity in three frames (dotted lines). For static receptors (A,

B and E) the resolution cannot be improved because the same signal is integrated over

time. Due to motion (arrow), receptors C and D, although beginning their integration in

the same pixel, observe different signals which we exploit for resolution enhancement.

Second, for differing paths p(t) (even if only the starting points differ) the outcome of

the integration generally differs. This will be key in increasing the apparent resolution.

Due to the changing correspondence between pixels and receptors during SPEM, as

well as the temporally varying pixel information, differing receptors usually receive

differing information (Figure 5.3, cases C,D). Consequently, we can control smaller

regions in the retina than the projection of a single pixel.

5.3.1 Simple Case

Before generalizing our approach, we will first illustrate the simple case of a static high-

resolution 1D image IH . For each high-resolution pixel we assume a single receptor

ri, while our 1D display can only render a low-resolution image IL. Let us assume for

now that the resolution of IH is twice as high as the resolution of IL and that the image

is moved with a velocity of half a display pixel per frame. In theory, we could change

the value of each display pixel on a per-frame basis. Nevertheless, we assumed that

all receptors track the high-resolution image perfectly. Hence, after two frames, all

receptors have moved exactly one screen pixel. We find ourselves again in the initial

configuration and the same two-frame subimage sequence can be repeated.

For this particular case, each receptor will, while tracking the image, either see

the color of exactly one pixel during the duration of two frames or of two consecutive

pixels. More precisely, following Eq. 5.2, receptor i captures:

ri =

{
(IL(i,0)+ IL(i,1))/2 : i%2 == 0

(IL(i,0)+ IL(i+1,1))/2 : i%2 == 1
(5.3)

In order to make the retinal response best match IH , ri should be close to IH(i).
This can be formulated as a linear system:

W
(

I1
L

I2
L

)
= IH , (5.4)

where It
L is the subimage displayed at time t and W a matrix that encodes the transfer

on the receptors according to Eq. 5.2. In the scenarios we considered, the matrix W is
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Figure 5.4: Our method vs. Lanczos. Our method uses image motion to improve the

perceived resolution along this movement direction by showing 3 subimages on a rapid

display. While we rely on a frame optimization, moving Lanczos resampling derives

subimages by filtering the translated original image. The eye integration is computed

by blending the subimages, assuming perfect tracking.

overdetermined, meaning that there are more independent equations in our system than

variables (unknown pixels in subimages). We usually assume that there are fewer pixels

displayed over time than the total resolution of the original image and the resolution of

the retina is considered to be at least as high as the resolution of the original image.

We find the final solution using a constrained quadratic solver [Coleman and Li 1996].

While a standard solver would also provide us with a solution that is coherent with

respect to our model, a constrained solver respects the physical display limitations with

respect to brightness. Therefore, this approach guarantees that the final subimages can

be displayed within the range of zero (black) to one (white). Our problem is convex

and so convergence can be guaranteed.

It is natural that subimages contain aliasing. The receptors will integrate the

image along the motion path and therefore filter the values. On the other hand, our

optimization minimizes the residual of the perceived final image with respect to the

original high resolution version. Therefore, as long as the original frame does not

exhibit aliasing problems, the optimization should avoid aliasing in the perceived image

as well. Although it is difficult to formally prove this cancellation, no aliasing problems

were observed during our experiments.

Figure 5.4 shows an example of a horizontal movement. The resulting spatial

apparent resolution is much higher horizontally (blue) than for a standard bandwidth-

filtered image, while vertical resolution (red) is similar to the case of a moving Lanczos

resampling.

5.3.2 General Case

An important property is that an integer movement allows us to reuse the subimage

sequence after a few iterations. This is interesting for static images where one can

choose a displacement direction and enhance resolution using only a small amount of

texture memory.
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Figure 5.5: Flickering reduction. Left: Original high resolution image. Center:

Reduction map. Right: Outcome of Lanczos filtering, as well as our approach before

and after flickering reduction for the marked regions. Note that in the regions of strong

temporal contrast reduction an improvement over Lanczos filtering is visible. Similar

to Figure 5.4, images for our approach are simulations of perceived images assuming

motion and perfect eye tracking.

It is possible to treat more general movements by adapting the integration weights

wt from Eq. 5.2. Basically, the weights should be proportional to the time, that

a pixel’s color is seen by a photoreceptor. To formally compute these weights, we

introduce one weight wx,y,t for each pixel value It
x,y where x,y is a discrete pixel position

and t the discrete time interval during which the pixel’s color is constant, such that:∫ T
0 I(p(t), t)dt = ∑wx,y,t It

x,y. It follows:

wx,y,t :=
1

|p|
∫

χ(i, j)(p(t)) χk(t)dt, (5.5)

where χ describes a characteristic function and |p| is the total length of path p. Precisely,

χ(i, j)(p(t)) equals one if p(t) lies in pixel (i, j), else it is zero, χk(t) is a similar function

to test the time intervals. One underlying assumption is that the receptor reaction is

immediate with respect to a changing signal. Consequently, temporal integration

corresponds to a box filter in the temporal domain.

5.4 Flicker Reduction

The previous result respects the limits of the display device, but it does not necessarily

respect the limits of the HVS. We made the crucial assumption that the HVS integrates

a fixed number of subimages and our method only works if their pixel information is

fused without producing objectional flickering. To arrive at a flicker-free solution, we

proceed as follows: First, a perceptual flicker model computes the amount of flicker for

every pixel in the optimized sequence (the reduction map). Second, we use this map to

define a pixel-wise blending between our potentially flickering, but optimized sequence

and a never-flickering, non-optimized standard filtering sequence (Figure 5.5).
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5.4.1 Flicker Detection Model

The flicker detection model, used in our solution, is multi-scale, conforming to the

scale-dependence of the CFF. It derives per-scale reductions that are pushed to the

pixel level where the final contrast reduction happens. In detail, we first compute the

maximal intensity fluctuation in each pixel of our subimages. Because flickering is

strongly scale-dependent [Mäkelä, Rovamo and Whitaker 1994], we cannot just rely

on these values. We use a gaussian pyramid to add a scale component. For each level,

this results in a fluctuation measure of the corresponding area in the original image.

We can then rely on the perceptual findings in [Mäkelä, Rovamo and Whitaker 1994,

Figure 1], to predict the maximally-allowed temporal variation that will not lead to

perceived flickering for such an area (measured as an angular extent). If we find that

these thresholds are exceeded, we compute by how much the temporal fluctuation

needs to be reduced. We then propagate these values to the lowest-pixel level by taking

the maximum reduction that was attributed to it on any of the higher levels (refer to the

flickering map in Figure 5.5). The maximum ensures that the final flickering will be

imperceptible on all scales.

5.4.2 Flicker Sensitivity vs. Pattern Spatial Extent

Related experiments with flickering visibility of thin line stimuli (with the angular

length up to 2◦) indicate a low flickering sensitivity, both in the fovea and periphery

[McKee and Taylor 1984, Figure 5]. Further evidence exists that the sensitivity gener-

ally drops rapidly for small patterns [Mäkelä, Rovamo and Whitaker 1994]. This is of

advantage to our method as it hints at flickering being mostly visible in large uniform

regions. As these uniform regions are those lacking detail and, consequently, our

subimages will strongly resemble the original input, any value fluctuation is eliminated.

Hecht and Smith [Kalloniatis and Luu 2009, Figure 10] found that for a stimuli

of 0.3◦ angular extent and adaptation luminance below 1000 cd/m2, the CFF does not

exceed 40 Hz. Similar observations can be made in the Ferry-Porter law that indicates a

roughly linear CFF increase with respect to the logarithm of time-averaged background

intensity up to 40 Hz where the CFF starts to stagnate and the law no longer holds.

This seems to indicate that the choice of three intermediate images for a 120 Hz display

is very appropriate. In practice, we encountered very few flickering artifacts when

displaying a three-subimage solution unprocessed. Consequently, our postprocess

leaves most of the original solution unaltered. Nevertheless, when longer integration

times are needed, either because more subimages are added or the display’s refresh

rate is reduced, the processing improves the result significantly. On a 120 Hz display,

four subimages became possible without visible flickering. Such a case is illustrated in

Figure 5.5. Four subimages lead to more details than the three subframe solution and

we can work with lower velocities.

5.4.3 Discussion

Our approach keeps the highest amount of detail possible while ensuring that the

outcome does not result in a perceivable flickering as detected by our flickering model.

The blur in Figure 5.5 (bottom-right) is a natural consequence of this trade-off between
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detail/flickering and low-resolution/no-flickering. Since our optimization guarantees

that the resulting image fits to the display range, which is also the case for energy-

preserving Lanczos filter, any interpolation between such a pair of images cannot cause

intensity clipping. Artifacts, e. g., ringing cannot occur, because the reduction map,

used for blending, needs only to be a conservative bound in order to detect perceived

flickering. Hence, it is possible to find a conservative band-limited image (in practice,

a dilation followed by smoothing).

One alternative flicker suppression would be to incorporate the constrains on the

maximal temporal fluctuations of signal into the optimization, but this has disadvan-

tages. The process would no longer be quadratic, endangering convergence. It would

increase computation times and put pressure on the hard constraints needed to match

the display’s dynamic range.

A second alternative would be to suppress flickering via temporal smoothing, but

such attempts prove inadequate. Temporal smoothing combines information that should

be kept separate to achieve the resolution enhancement according to our model. To

illustrate this, consider the receptor C in Figure 5.3 moving from one pixel to the next

at time t. Filtering over time, would introduce information in the first pixel that occurs

after time t, this information was not supposed to be seen by C which at time t is

already in the second pixel. We exploit this combination of time and space in our

model.

Our flicker reduction, is general and is executed in milliseconds on the GPU. It

could be used in other contexts, e. g., to detect and then remedy temporal aliasing for

real-time rendering.

5.5 Experimental Validation

To illustrate the versatility of our approach, we present several application scenarios

and tested them in a user study in order to illustrate their effectiveness. In this section

we describe procedures of our experiments as well as details such as participants,

materials and apparatus.

5.5.1 Participants

14 participants with normal or corrected-to-normal vision took part in the main part

of experiments. In an additional 3D rendering part five participants were considered.

Subjects were compensated for their efforts with a small fee ($14). Participants were

recruited from the university campus and were mostly students of computer science.

Subjects were naïve regarding the goal of the experiment and inexperienced in the field

of computer graphics.

5.5.2 Materials and Apparatus

All stimuli were presented on a 22 inch (diagonal) Samsung 2233RZ 120 Hz display at

its native resolution 1680×1050 that was connected to a personal computer with an

NVIDIA GTX 260 running in the synchronization mode. We investigated also lower
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Figure 5.6: Images used as stimuli in our experiment with high resolution images.

resolutions to address the fact that displays constantly grow, often already exceeding

100 inches, but keeping their resolution on the level of full HD. On a 100-inch screen,

pixels would approximately be four times bigger than in our experiments. The monitor

was viewed by the subjects orthogonally at a distance of 50–70 cm. Because some

experiments required that two images are simultaneously shown next to each other

in a horizontal arrangement, the video sequences and images of resolution 600×600

have been used in all studies. We considered a 120 Hz refresh rate, decomposing the

original images into three subimages to illustrate that the details are also visible for the

faster-moving variant (compared to four subimages).

5.5.3 Procedures

We conducted a couple of different studies whose procedures are described here. In

all of them the participants were seated in front of a monitor running the experimental

software in a room with controlled artificial lighting. They received standardized

written instructions regarding the procedure of the experiment. In all experiments the

time for each trial has been unlimited.

High-resolution Images

In our first study we considered five stimuli (Figure 5.6), including detailed rendering

and text as well as natural images (photographs of a cat and a car). The hair and car

images have been rendered with a high level of detail and include subpixel information

from elongated hair strands and tiny sparkles in the metallic paint. Text was used to

evaluate readability as an indicator of detail visibility. Finally, we used photographs to

check the performance of our method for real images, which often exhibit slightly blurry

edges with respect to synthetic images. In case of the car photograph we were interested

in the perceived appearance of regular structures with details in all directions. Our aim

was to show that our method outperforms standard image-downsampling techniques.

We tested various velocities and compared our method to Lanczos resampling as well

as Mitchell and Netravali [1988], asking people to compare the detail visibility.

The images have been moved in different directions and the subimages have been

obtained as a result of the optimization procedure described in this chapter. For each

moving direction the velocity has been chosen so that precomputed three subimages

can be sequentially repeated.

In the first part of the study, subjects compared the static reference image of high-

resolution that was placed on the right to a moving image on the left. The left image

was per-frame Lanczos-filtered or our solution, initialized randomly and not labeled.
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Figure 5.7: Our method against Lanczos in 3:1 scale (left) and original scale (middle)

as well as Mitchell-Netravali (right).

We did not consider more naïve solutions like nearest-neighbor filtering, as their lower

quality and objectionable flickering are readily visible. Subjects could toggle between

two methods via the keyboard without any time limit. Subjects were asked to choose

the method for which the reproduction of details is closest to the reference version.

The results of this part of experiment are shown in Figure 5.7 (left). The second part of

the study was similar to the first (Lanczos), but moving full-HD resolution images have

been compared without any reference (Figure 5.7, middle). For this first experiment,

the pixel size in the moving image was three times enlarged to match the scale of the

reference image. All other experiments used the native resolution.

Next, we tested our method against Mitchell-Netravali [1988] filtering. The filter

can be balanced between sharpening and smoothing using two parameters which makes

it adequate for a large variety of images. We asked subjects to adjust the parameters

to match their preferences with respect to the high-resolution image. Later, they

were asked to compare their result with our technique, again by toggling between the

methods (Figure 5.7, right).

Our technique performed better in terms of detail reconstruction, even when al-

lowing filter parameter adjustments. During all experiments no flickering or temporal

artifacts have been observed. A series of t-tests (Table 5.1) showed statistical difference

in all cases with a significance level of .05.

Minimal Text

Encouraged by the outcome of the first experiment with the text stimuli we wanted to

check what are the readibility limits in terms of font size. To this end we investigated

horizontally moving text often used for TV news channels, as well as hand-held devices.

To push our technique to the limits, we attempted to produce a 2×3 pixel sized font

containing English capital letters. We created it by hand at a 6×9 resolution (Figure 5.8,

but did not invest much time in optimizing the characters. We showed all the letters in

random order to subjects asking for identification and compared our method to Lanczos

filtering. The characters have been placed in chunks of five characters rather than

isolated fonts to mimic a text document. We did not compare to static text because any

attempts to produce such a small font were futile.

Although not perfect (Figure 5.9), the results indicate the quality-increase due to

our apparent resolution enhancement. Performed series of t-tests showed significant

difference between our font and standard downsampling for 13 out of 26 (Figure 5.9)
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Paint Cat Hair Car Text

Our vs. Lanczos (3:1 scale)

t(26) 8.485 8.485 3.551 3.551 ∞
p < .001 < .001 .002 .002 < .001

Cohen’s d 3.207 3.207 1.342 1.342 ∞
Our vs. Lanczos

t(26) 5.204 3.551 8.485 8.485 8.485

p < .001 .002 < .001 < .001 < .001

Cohen’s d 1.967 1.342 3.207 3.207 3.207

Our vs. Mitchell

t(26) 5.204 2.419 ∞ 3.551 8.485

p < .001 .023 < .001 .001 < .001

Cohen’s d 1.967 0.914 ∞ 1.342 3.207

Table 5.1: High-resolution images experiment: The table contains t- and p-values as

well as effect size (Cohen’s d) for pairwise comparison of our method with respect to

Lanczos and Mitchel filtering.

Figure 5.8: The 6 × 9 font used by our optimization procedure to be displayed in

2 × 3 raster.
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Figure 5.9: Character recognition: Standard filtering vs. Ours. Dark horizontal lines

indicate significant statistical difference.

for a significance level of .05. The biggest improvement was, as expected, in the

horizontal direction that coincides with the movement. H, K, M, N, R, X contain much

horizontally oriented information, making them easy to read. On the other hand, the

lack of improvement in vertical direction, affects letters such as: B, G.

3D Rendering

We also conducted a smaller study for 3D rendering applications. We estimated the

eye tracking based on a derived motion flow. We assumed that the motion is piecewise

linear for different image regions, and, thus, we can apply our technique locally. We
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used a scene showing highly detailed hair and a 3D terrain in a fly-over view similar to

Google Earth. Similar to the high-resolution image experiment, subjects could toggle

between moving images for our method and respectively Lanczos and Mitchel filtering.

All five subjects chose our solution over Lanczos and Mitchel for both scenes.

5.6 Discussion

Slightly moving images have become common practice of web-page designers that

present scrolling photos, or scrolling text (e.g., news), and small animations. Besides

guiding attention and looking more natural and lively (the Ken Burns effect), improved

detail perception, as shown in our experiments, might explain this trend. Our experi-

ments suggest that the strongest enhancement can be obtained using our technique, but

even frame-wise downsampling (taking into account the current mapping to physical

pixels) is a better strategy than naïve resampling of a downsampled image.

Proper filtering becomes even more important for large displays, as illustrated by

our study, but big velocities imply the need for higher refresh rates to counteract the

hold-type effect.

The optimization scheme delivers a high-quality result, but is computationally

costly (e.g., double full-HD image 3840×2160 using three subimages is processed

in approx. 18 minutes, standard full HD needed 5 min). However, our CPU-based

optimization could be improved, especially using a GPU implementations. Our first

experiments with a gradient-descent GPU solver (enforcing constraints in each it-

eration via clamping), showed that the computation time can be reduced to below

1 s. An efficient GPU-solver for the subimages generation was later described in

[Templin et al., 2011].

Our model does not rely on any profound hardware-specific assumptions (e.g.,

not on the RGB subpixel layout) which makes our technique relatively immune to

technological and perceptual differences. In our experiments with an 120 Hz CRT

display as well as 60 Hz DLP and LCD projectors we have obtained a clear resolution

enhancement. Therefore, we also expect that our technique works for OLED displays

where very high frame rates should lead to an even stronger resolution enhancement.

Essentially, our model conforms with the major goals of display manufacturers to

reduce the visibility of RGB subpixel layout and screen door effect, which otherwise

could ruin the impression of image integrity and continuity.

Motion is key to our approach because it ensures that the pixel grid projects to

different locations on the retina, which we exploit in our approach. Consequently,

there is a link between the motion direction and the apparent resolution increase, e.g.,

horizontal / vertical motion only enables horizontal / vertical improvements.

Our method relies on the efficiency of SPEM, which was shown to perform well

even for more complex motions (Section 2.2.2) than those used here. Also switching

between two objects, while tracking, is not a problem as saccadic movements are very

fast. This makes our resolution enhancement feasible for more complex than panning

motion.
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5.7 Conclusions

Due to the limited spatial resolution of current displays, the depiction of very fine details

is difficult. In this chapter, we proposed a novel reconstruction for moving images, that

takes human perception into account to improve the detail reproduction. To this end, we

vary pixel intensities rapidly over time and rely on temporal integration properties of

the HVS. Our work is general in the sense that it extends to arbitrarily high frame rates.

We discussed how finding the optimal temporal variation for a specific eye-movement,

retinal temporal integration time, image resolution and display resolution allows us

to virtually “address” apparent super-resolution pixels on a conventional-resolution

display. Finally, we evaluated the improvement in terms of apparent details in a

perceptual study. We presented various applications including improved photo details,

panorama pop-up views, online rendering, and scrolling texts (where we pushed the

limits by showing that a 2×3 pixel font can still be legible). In many cases, significant

improvements can be achieved using our method. In other cases, no new artifacts –

such as flickering – are introduced.

We further improved our techniques in Templin et al. [2011], showing that the

apparent resolution enhancement can be applied to regular video sequences where

SPEM is estimated using optical flow techniques. This allowed us to enhance resolution

by exploiting the motion present in the scene. We also proposed there a fast GPU-based

method for computing subimages. Recently, the concept of resolution improvement

relying on temporal integration properties of the HVS was extended by Berthouzoz

and Fatal [2012]. They achieved resolution enhancement by moving a display in a

periodical manner (i. e., vibrating), instead of introducing motion. This allowed them

to achieve a similar resolution gain but for a static content.

In the future, we want to exploit the display mosaics similarly to the ClearType

fonts. Initial attempts have not led to a clear quality improvement and this issue

requires further investigation. We demonstrated the applicability of our approach to

offline rendering. In the future, we would like to opt for an online context, eventually

combining our solution with an eye trackers to only locally perform the optimization

computation. In a first attempt, we also tried to construct directional filters from the

results of the optimization process, but (because our optimization is not a filtering)

the values often exceed the dynamic range of the display. We can reduce the contrast

via blending, but then the results are clearly inferior to the full optimization and show

color aberrations. This remains an exciting avenue for future work. It would be also

interesting to investigate newer display devices such as new Sony PlayStation 3D

Display which offers 240 Hz framerate. Using such a screen would potentially improve

results even further and reduce possible problems with flickering.
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Figure 6.1: A metric derived from our model, that predicts the perceived difference

(bottom) between original and distorted disparity (top right).

In the previous chapters we considered resolution enhancement as well as improving

animation smoothness which were both achieved by means of skillful manipulation

applied in temporal domain. Such techniques allow better adjustment of available

footage to a display device characteristic and leads to a perceived quality improvement.

Similar content manipulations have recently become crucial in the context of 3D stereo

where quality of perceived footage does not only depend on the footage itself and

available 3D equipment, but also on viewing conditions (Chapter 2). The complexity

of depth perception makes the process of preparing good stereo content difficult. This

comes mostly from the fact that the HVS uses many different cues [Palmer 1999;

Howard and Rogers 2002] to estimate spatial objects configuration, which is essential

for the scene understanding.

The interplay among different depth cues has challenged artist for many centuries,

who tried to convey a believable depth impression on 2D surfaces [Livingstone 2002].

Also today, when 3D stereo gains significant attention, it has been identified as an

important problem in contemporary computer graphics [Wanger, Ferwerda and Green-

berg 1992; Matusik and Pfister 2004; Lang et al. 2010]. Current 3D display technology

allows us to make use of binocular disparity, but often, a good stereo impression is

75
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obtained through trials and errors. This, however, is usually a very tedious and time

consuming task for artists. The biggest challenge in the stereo footage creation is

limitation of depth range that can be reproduced using current 3D technology (Sec-

tion 2.3.4). When an object presented in the scene violates depth limits (comfort zone

[Shibata et al. 2011; Lambooij et al. 2009]), viewing discomfort can be experienced

(Section 2.3). Therefore, in order to ensure comfort, minimize perceived distortions,

but also to improve the 3D content creation process and allow artist to modify depth

impression, recent years have produced many successful methods for disparity manipu-

lation [Jones et al. 2001; Lang et al. 2010]. Whenever such modifications are applied,

it is important to analyze their impact on disparity perception. Such prediction would

lead to better control of the changes and could provide useful guidelines for better

disparity/depth manipulation techniques.

In this part of the dissertation, we aim at providing computational models for better

understanding and modeling the HVS disparity processing. There are many known

and unknown high-level processes involved in stereo perception and although there

have been many attempts to better understand how the HVS interprets depth and how

sensitive it is to different cues [Cutting and Vishton 1995; Howard and Rogers 2002],

no method for modeling the depth perception has been proposed so far. In our work, we

will exclusively consider binocular disparity, a low-level, pre-attentive cue, attributed

to the primary visual cortical areas [Howard and Rogers 2002, Chapter 6] as it is one

of the most important and appealing stereo cues for short distances (up to 30 meters)

[Cutting and Vishton 1995].

This chapter is organized as follows. In section Section 6.1, we give an overview

of the techniques presented in this chapter . In Section 6.2, we introduce a perceptual

disparity model together with its derivation. Later, in section Section 6.3, we show

how such a model can be used to construct a disparity metric that is able to predict

perceived differences between stereo images. In Section 6.4, we improve the disparity

model by proposing a new one which accounts for influence of underlying luminance

information on disparity perception, and show how this enhances performance of

the disparity metric. This is followed by an additional discussion (Section 6.5) and

conclusions (Section 6.6).

6.1 Overview

Inspired by the existing similarities between brightness and depth perception described

in Section 2.3 as well as work on luminance perception (Section 3.3.1), in this chapter,

we show how a perceptual model for disparity can be developed. Our technique allows

for better understanding of binocular disparity perception and prediction of the HVS

response to various disparity stimuli. The key information needed to build such a model

are measurements of disparity detection thresholds. Although there were a couple

of psychophysical measurements performed to acquire the sensitivity of the HVS to

disparities [Tyler 1975; Bradshaw and Rogers 1999; Howard and Rogers 2002], none

of them allowed for building a model as complete as those available for luminance

[Daly 1993; Lubin 1995]. Therefore, in our work, we conducted a number of psycho-

visual experiments to obtain the thresholds for sinusoidal patterns in depth with different

frequencies and amplitudes. This allowed us to fit an analytic function to the obtained

data, which describes detection thresholds for a whole range of possible sinusoidal
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depth corrugations. Such a function can be later used for constructing a model based on

so-called transducer functions, which map disparity values to a perceptually linearized

space. The transducer functions are invertible, therefore changing from physical

disparity values into a perceptual space and back becomes possible.

In existing disparity processing algorithms the influence of RGB image content

on depth perception has been usually ignored. Intuitively, a certain magnitude of

luminance contrast is required to make disparity visible, while stereopsis is likely to

be weaker for low-contrast and blurry patterns. In this chapter, we also show that

luminance contrast does have a significant impact on depth perception and should be

taken into account for a more faithful computational model. Therefore, we further

improve our disparity model including luminance, which allows for more accurate

prediction of the HVS response. One key challenge of a combined luminance-disparity

model is the growing dimensionality, which we limit to 4D by considering frequency

and magnitude of disparity, as well as frequency and contrast of luminance. Similarly

as for the previous model, we conducted a psycho-visual experiment that provides

necessary data to construct such a model.

Since the here-presented disparity model can predict a response of the HVS to

disparity patterns, it can be used for computing perceived differences between stereo

images. In this chapter, we also show how such a disparity metric can be constructed us-

ing our model and how taking into account luminance pattern influences the prediction

of differences.

6.2 Disparity Model

In this section we describe a model that predicts the HVS response to a disparity signal.

This model accounts only for disparity signals so its prediction is an upper-bound on

the factual response of the HVS, as a perfect luminance pattern is assumed.

Our disparity model is based on transducer functions which were introduced earlier

for luminance [Wilson 1980; Mantiuk, Myszkowski and Seidel 2006]. They allow for

mapping disparity values to a perceptually linearized space as well as mapping back

to original disparity space. To derive those functions, we need precise detection and

discrimination thresholds that cover the full range of magnitudes and spatial frequencies

of corrugated patterns that can be seen without causing diplopia. Therefore, we first

describe an experiment for obtaining such data and then show how it can be used to

build the disparity model.

6.2.1 Measurements

While some disparity detection data is readily available [Bradshaw and Rogers 1999;

Tyler 1975] (see [Howard and Rogers 2002, Chapter 19.6.3] for a survey), we are

not aware of any set of densely measured discrimination thresholds. The closest

experiment to ours has been performed by Ioannou et al. [1993] where observers

matched corrugations of various spatial frequencies to a variable amplitude-reference

corrugation of fixed intermediate frequency. Only three suprathreshold amplitudes

(up to 8 arcmin) have been investigated [Howard and Rogers 2002, Fig. 19.24 d],

and we are more interested in the disparity-difference discrimination within the same
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frequency to account for intra-channel masking. Also, for the disparity detection

task, different stereoacuity has been reported ranging from 2–6 arcsec [Bradshaw and

Rogers 1999, Figure 1] up to 30 arcsec, which accordingly to Coutant et al. [1993] is a

more representative value for most individuals. Furthermore, existing measurements

are often performed with sophisticated optical setups (e. g., [Blakemore 1970]), they

require participants to fixate on points or bars, sometimes for only a short time, whereas

we want to acquire data for modern, inexpensive 3D displays, which are also used in

our applications (Chapter 7).

In our experiments, we allow for free eye motion , making multiple fixations on

different scene regions possible, which approaches real 3D-image observations. In

particular, we want to account for a better performance in relative depth estimation

for objects that are widely spread in the image plane (see [Howard and Rogers 2002,

Chapter 19.9.1] for a survey on possible explanations of this observation for free

eye movements). The latter is important to comprehend complex 3D images. In

our experiments, we assume that depth corrugated stimuli lie at the zero disparity

plane (i. e., observers fixate corrugation) because free eye fixation can mostly com-

pensate for any pedestal disparity within the range of comfortable binocular vision

[Lambooij et al. 2009; Hoffman et al. 2008]. Such zero-pedestal disparity assump-

tion guarantees that we conservatively measure the maximum disparity sensitivity

[Blakemore 1970], which in such conditions is similar for uncrossed (positive, i. e.,

ω−θ > 0 as in Figure 2.9) and crossed (negative) disparities [Howard and Rogers 2002,

Fig. 19.24 c]. For this reason in what follows we assume that only disparity magnitude

matters in the transducer derivation.

Parameters

Our experiments measure the dependence of perceived disparity on two stereo image

parameters: disparity magnitude and disparity frequency. We do not account for vari-

ations in accommodation, viewing distance, screen size, luminance, or color and all

images are static.

Disparity Frequency specifies the spatial disparity change per unit visual degree.

Note, that it is different from the frequencies of the underlying luminance, which we

will call luminance frequencies. We considered the following disparity frequencies:

0.05, 0.1, 0.3, 1.0, 2.0, 3.0 cpd. In the pilot study, we experimented with more ex-

treme frequencies, but the findings proved less reliable (consistent with [Bradshaw and

Rogers 1999]).

Disparity Magnitude corresponds to the corrugation pattern amplitude. The range

of disparity magnitude for the detection thresholds to suprathreshold values that do

not cause diplopia have been considered, which we determined in the pilot study for

all considered disparity frequencies. While disparity differences over the diplopia

limit can still be perceived up to the maximum disparity [Tyler 1975], the disparity

discrimination even slightly below the diplopia limit is too uncomfortable to be pursued

with naïve subjects. Therefore, the maximum disparity magnitude that we consider in

our experiment is decreased explicitly, in some cases, significantly below this boundary.

After all, we assume that our data will be mostly used in applications within the disparity
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Figure 6.2: (1) Disparity magnitude ranges: (red) maximum disparity used in our

experiments, (yellow) diplopia and (blue) maximum disparity limits. (2) The experi-

mental setup where subjects select the sinusoidal gratings which exhibits more depth.

(3) Our fit to the disparity discrimination threshold function Δd(s). (4) The cross

section of our fit at the most sensitive disparity frequency 0.3 cpd (the error bars denote

the standard error of the mean (SEM) at measurement locations). (5) Analogous cross

section along frequency axis showing the detection thresholds. Both cross sections

are marked with white dashed lines in (3). (6) The transducer functions for selected

frequencies. Empty circles denote the maximum disparity limits.

range that is comfortable for viewing. Figure 6.2.1 shows our measured diplopia and

maximum disparity limits, as well as the effective range disparity magnitudes that we

consider in our experiments.

Stimuli

All stimuli are horizontal sinusoidal gratings with a certain amplitude and frequency

with a random phase. Similarly to existing experiments, the disparity is applied to a

luminance pattern consisting of a high number of random dots, minimizing the effect

of most external cues (e. g., shading). A cue that could influence our measurements is

texture density. However in our case, as we seek to measure 1 JND, subjects always

compare patterns with very similar amplitudes. Therefore the difference in texture

density between two stimuli is always imperceivable and does not influence detection

thresholds as confirmed by Bradshaw et al. [1999]. Formally, we parameterize a stimu-

lus s ∈ R
2 in two dimensions (amplitude and frequency). The measured discrimination

threshold function Δd(s) : S →R maps every stimulus within the considered parameter

range to the smallest perceivable disparity change.

In order to generate stimuli, an image-based warping is used to produce both views

of the stimulus independently. First, the stimulus’ disparity map D is converted into

a pixel disparity map Dp, by taking into account the equipment, viewer distance, and

screen size. We assumed standard intra-ocular distance of 65 mm, which is needed for
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conversion to a normalized pixel disparity over subjects. Next, the luminance image

is traversed and every pixel L(x) from location x ∈ R
2 is warped to a new location

x± (Dp(x),0)T for the left, respectively right eye. As occlusions cannot occur for

these stimuli, warping produces artifact-free valid stimuli. To ensure sufficient quality,

super-sampling is used: Views are produced at 40002 pixels, but shown as 10002-pixel

patches, down-sampled using a 42 Lanczos filter.

Equipment

We use three representative forms of stereo equipment (refer to [Onural et al. 2006]

for a 3D display technology survey): active shutter glasses, anaglyph glasses and an

auto-stereoscopic display. We used Nvidia 3D Vision active shutter glasses (∼ $100)

in combination with a 120 Hz, 58 cm diagonal Samsung SyncMaster 2233RZ display

(∼ $300, 1680×1050 pixels), observed from 60 cm. As a low-end solution, we also

used this setup with anaglyph glasses. Further, a 62 cm Alioscopy 3DHD24 auto-

stereoscopic screen (∼ $6000, 1920× 1080 pixels total, distributed on eight views

of which we used two) was employed. It is designed for an observation distance of

140 cm. Unless otherwise stated, the results are reported for active shutter glasses.

Subjects

All subjects in our experiment are naïve, paid, and have normal or corrected-to-

normal vision. We verified that no subject was color [Ishihara 1987] or stereo-blind

[Richards 1971].

Task

In this experiment, we sample Δd at locations S = {si|si ∈ S} by running a discrimina-

tion threshold procedure on each to evaluate Δd(si). A two-alternative forced-choice

(2AFC) staircase procedure is performed for every si. This technique is called the PEST

(Parameter Estimation by Sequential Testing) procedure [Taylor and Creelman 1967]

and was also used for luminance by Bradley et al. [1986]. Each staircase step presents

two stimuli: one defined by si, the other as si +(ε,0)T , which corresponds to a change

of disparity magnitude. Both stimuli are placed either right or left on the screen (Fig-

ure 6.2.2), always randomized. The subject is then asked which stimulus exhibits more

depth amplitude and to press the “left” cursor key if this property applies to the left

otherwise the “right” cursor key. After three correct answers ε is decremented and

after a single incorrect answer it is incremented by the step-size determined via PEST

(Parameter Estimation by Sequential Testing) [Taylor and Creelman 1967].

In total 27 PEST procedures have been performed per subject. Twelve subjects

participated in the study with the shutter glasses and four subjects with each other setup

of stereo equipment (anaglyph and auto-stereoscopy). Each subject completed the

experiment in 3–4 sessions of 20–40 minutes. Four subjects repeated the experiment

twice for different stereo equipment.
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6.2.2 Model

We use the data from the above procedure to determine a model of perceived disparity

by fitting an analytic function to the recorded samples. It is used to derive a transducer

to predict perceived disparity in JND (just noticeable difference) units for a given

stimulus which is the basis of our stereo difference metric (Section 6.3).

Fitting

To model the thresholds from the experiment, we fit a two-dimensional function of

amplitude a and frequency f to the data (Figure 6.2.3–5). We use quadratic polynomials

with a log-space frequency axis to well fit (the goodness of fit R2 = 0.9718) the

almost quadratic “u”-shape measured previously [Bradshaw and Rogers 1999, Fig. 1].

Figure 6.3 and 6.4 summarize the obtained data for each type of the equipment in our

discrimination threshold experiments. For each set of data we fit the discrimination

threshold function, which is denoted as ds, dag, das for shutter glasses, anaglyph and

auto-stereoscopic display respectively:

Δds( f ,a) = 0.2978+0.0508a+0.5047 log10( f )+

0.002987a2 +0.002588a log10( f )+0.6456 log2
10( f ).

Δdag( f ,a) = 0.3304+0.01961a+0.315 log10( f )+

0.004217a2 −0.008761a log10( f )+0.6319 log2
10( f ).

Δdas( f ,a) = 0.4223+0.007576a+0.5593 log10( f )+

0.0005623a2 −0.03742a log10( f )+0.7114 log2
10( f ).

For all devices the minimum disparity sensitivity was found for ∼0.4 cpd, which

agrees with previous studies [Bradshaw and Rogers 1999]. Our results indicate that the

disparity sensitivity near the detection threshold and for low disparity magnitudes is

the highest for the shutter glasses (Figure 6.4) . For larger disparity magnitudes the

differences in the sensitivity are less pronounced between different stereo technologies

and overall the shape of discrimination threshold functions is similar regardless the

equipment.

Measurements for auto-stereoscopic display revealed large differences with respect

to shutter and anaglyph glasses. This, we think, is due to much bigger discomfort,

which was reported by our subjects. Also measurements for such displays are more

challenging due to difficulties in low spacial frequency reproduction, which is caused

by relatively big viewing distance (140 cm) that needs to be kept by a observer. The

disparity sensitivity drops significantly when less than two corrugations cycles are

observed due to lack of spatial integration [Howard and Rogers 2002], which might be

a problem in this case. We observed that measurements for disparity corrugations of

low spacial frequencies are not as consistent as for higher frequencies and they differer

among subjects. Surprisingly, our experiments seem to indicate that for larger disparity

magnitudes the disparity sensitivity is higher for the auto-stereoscopic display than
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Figure 6.3: Shutter glasses: Disparity detection and discrimination thresholds as a

function of the spatial frequency of disparity corrugations for different corrugation

amplitudes as specified in the legend. Points drawn on curves indicate the measurement

samples. The error bars denote the standard error of the mean (SEM).

for other stereo technologies we investigated. In future work it would be interesting

to consider bigger auto-stereoscopic displays, which would cover larger field of view,

allowing for discrimination thresholds measurements for lower frequencies which are

still important for the disparity perception. In this work, due to financial limitations we

did not used bigger screen.

Transducers and Inverse Transducers

Based on the obtained threshold functions, we derive a set of transducer functions

which map a physical quantity x (here disparity) into the sensory response r in JND
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Figure 6.4: Comparison of disparity detection and discrimination thresholds for three

different stereo devices.

units. Each transducer t f (x) : R+ → R
+ corresponds to a single frequency f and is

computed as t f (x) =
∫ x

0 (Δd(a, f ))−1da, where Δd is one of the fitted functions. As

all of them are positive, t f (x) is monotonic and can be inverted, leading to an inverse
transducer t−1

f (r), that maps a number of JNDs back to a disparity. Again, an inverse

transducer depends on the frequency f . For more details on transducer derivation refer

to Wilson [1980] or Mantiuk et al. [2006].

One should notice that limiting disparity magnitudes below the diplopia limits in

our experiments (Section 6.2.1) has consequences. Our Δd(s) fit is, strictly seen, only

valid for this measured range. Consequently, transducers (Figure 6.2.6) have to rely

on extrapolated information beyond this range. While the transducer functions look

plausible, they should actually remain flat beyond the maximum disparity limits, which

are denoted as empty circles in Figure 6.2.6. In those regions we enforce that the

overall increase of the transducers remains below a one-JND fraction, reflecting that

depth perception becomes impossible, but securing the inconvertibility of the function.

In practice, we rely on a family of transducers Tf discretized using numerical inte-

gration and inverse transducers T−1
f found by inversion via searching. All transducers

are pre-computed (Figure 6.2.6) and stored as look-up tables.

Pipeline

The transducers of the previous section can be integrated in a pipeline to compute

perceived disparity of a stimulus (Figure 6.5). This pipeline takes a stereo image,

defined by luminance and pixel disparity, as input and outputs the perceived disparity

decomposed into a spatial-frequency hierarchy that models disparity channels in the

HVS. Such spatial-frequency selectivity is usually modeled using a hiearchal filter

bank with band-pass properties such as wavelets, Gabor filters, Cortex Transform

[Watson 1987; Daly 1993], or Laplacian decomposition [Burt and Adelson 1983].
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Figure 6.5: Our perceived disparity model pipeline: Starting from angular vergence

derived for pixel disparity (top left, orange), a Laplacian decomposition separates

disparity in different frequency bands. The transducers acquired from our experiments

(bottom left, green) are used to transform disparity into perceptual units (JND).

The latter is our choice, mostly for efficiency reasons and the fact that the particular

choice of commonly used filter banks should not affect qualitatively the quality metric

outcome [Winkler 2005, p. 90].

First, the pixel disparity is transformed into corresponding angular vergence, taking

the 3D image observation conditions into account. Next, a Gaussian pyramid is

computed from the vergence image. Finally, the differences of every two neighboring

pyramid levels are computed, which results in the actual disparity frequency band

decomposition.

In practice, we use a standard Laplacian pyramid with 1-octave spacing between

frequency bands. Finally, for every pixel value in every band, the transducer of this

band maps the corresponding disparity to JND units by a simple lookup. In this way,

we linearize the perceived disparity.

To convert perceived disparity e. g., after a manipulation (see applications - Chap-

ter 7), back into a stereo image, an inverse pipeline is required. Given a pyramid of

perceived disparity in JND, the inverse pipeline produces again a disparity image by

combining all bands similarly to previous work on luminance [Mantiuk, Myszkowski

and Seidel 2006] and applying inverse transducers.

6.3 Metric

Based on our model, we can define a perceptual stereo image metric. Given two stereo

images, one original Do and one with distorted pixel disparities Dd, it predicts the

spatially varying magnitude of perceived disparity differences.
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Figure 6.6: Perceptual disparity image difference metric: First, an original and a

distorted pixel disparity map (bottom left) are transformed to vergence. Next, we

convert them into JND using our pipeline (top left). Subtracting both JND results we

obtain a per-band spatially varying perceived disparity difference (top right). Finally,

Minkowski summation combines all bands into a single distortion map scaled in JNDs

(bottom right).

6.3.1 Perceived Disparity Difference

In order to compute perceived disparity difference between two disparity maps Do

and Dd, we insert both of them into our pipeline (Figure 6.6). First, we compute the

perceived disparity Ro, respectively Rd. This is achieved using our original pipeline

from Figure 6.5 with an additional phase uncertainty step (also called the phase
independence operation in [Lubin 1995]) before applying per-band transducers. This

eliminates zero crossings at the signal’s edges and thus prevents incorrect predictions

of zero disparity differences at such locations. In practice, we use a 5×5 Gaussian

low-pass filter at every level of our Laplacian pyramid and compensate for the resulting

amplitude loss, which is a part of the calibration procedure (below). Than every pixel i, j
and each band k the difference Ro,d

i, j,k = Ro
i, j,k −Rd

i, j,k is computed and finally combined

using a Minkowski summation [Lubin 1995]: di, j =

(
∑k

∣∣∣Ro,d
i, j,k

∣∣∣β
) 1

β
, where β, found

in the calibration step, controls how different bands contribute to the final result.

The result is a spatially-varying map depicting the magnitude of perceived disparity

differences, which can be visualized, e. g., in false colors, as in Figure 6.1 (right).

In our metric, we consider all frequency bands up to 4 cpd, which cover the full

range of visible disparity corrugation frequencies and we ignore higher-frequency bands.

Note that the intra-channel disparity masking is modeled because of the compressive
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nature of the transducers for increasing disparity magnitudes. The band decomposition

enables us to model frequency selectivity of such masking, where disparity signals

from different channels are ignored.

6.3.2 Calibration

We performed the metric calibration to compensate for accumulated inaccuracies of our

model. The most serious problem is signal leaking between bands during the Laplacian

decomposition, which offers also clear advantages. Such leaking effectively causes

inter-channel masking, which conforms with the observation that the disparity channel

bandwidth of 2–3 octaves might be a viable option [Howard and Rogers 2002, Chap-

ter 19.6.3d]. This justifies relaxing frequency separation between 1-octave channels

such as we do. While decompositions with better frequency separation between bands

exist such as the Cortex Transform, they preclude an interactive metric response. Since

signal leaking between bands as well as the previously-described phase uncertainty

step lead to an effective reduction of amplitude, a corrective multiplier K is applied to

the result of the Laplacian decomposition.

In order to find good K and calibrate our metric, we used the data obtained in our

experiment (Section 6.2.1) and all the experiment stimuli used in measurements. As

distorted images, we considered the corresponding patterns with 1, 3, 5, and 10 JNDs

distortions. The magnitude of 1 JND distortion directly resulted from the experiment

outcome and the magnitudes of larger distortions are obtained using our transducer

functions. The correction coefficient K = 3.9 lead to the best fit and an average metric

error of 11%. Similarly, we found the power term β = 4 in the Minkowski summation.

6.3.3 Validation

In order to show that the response predicted by our model correlates and agrees with

what can be observed, we evaluated our metric in a few of steps. First, we tested for

the need of having different transducers for different bands. This is best seen when

considering the difference between two Campbell-Robson disparity patterns of different

amplitude (Figure 6.7). Comparing our metric and a metric, where the same transducer

for all bands is used, shows that ours correctly takes into account how the disparity

sensitivity depends on the pattern frequency. Our method correctly reports the biggest

difference in terms of JNDs for frequencies to which the HVS is most sensitive to (i. e.,
∼0.4 cpd). Using only one transducer is still beneficial comparing to not using it, which

in such a case would result in an uniform distortion reported by the metric.

Next, we checked whether subthreshold distortions as predicted by our metric

cannot be seen, and conversely whether over threshold distortions identified by our

metric are visible. We prepared three versions of each stimulus (Figure 6.8): a reference,

and two copies with a linearly scaled disparity which our metric identifies as 0.5 JND

and 2 JND distortions.

In a 2AFC experiment, the reference and distorted stereo images were shown and

subjects were asked to indicate the image with larger perceived depth. Five subjects

took part in the experiment where stimuli have been displayed 10 times each in a

randomized order. For the 0.5 JND distortion the percentage of correct answers falls



6.4. DISPARITY/LUMINANCE MODEL 87

Disparity pattern

Amplitude [arcmin]

Fr
eq

ue
nc

y 
[c

pd
]

1 [JND]

0 [JND]

Perceived difference

Single-bandMulti-band

= =-

Figure 6.7: A comparison of perceived difference between the Campbell-Robson

disparity pattern and the same pattern after adding a constant increment of amplitude

(left), once using one transducer per band (multi-band, center) vs. the same transducer

for all bands (single-band, right).

Figure 6.8: Left to right: Stimuli of increasing complexity and increasing amount of

external cues shown in red-cyan anaglyph: a Gabor patch, a 3D Terrain, and a Factory.

into the range 47–54%, which in practice means a random choice and indicates that the

distorted image cannot be distinguished from the reference. For the 2 JND distortion

the outcome of correct answers was as follows: 89%, 90%, and 66% for the scenes

Gabor, Terrain, and Factory, respectively. The two first results fall in the typical

probability range expected for 2 JND [Lubin 1995] (the PEST procedure asymptotes

are set at the level 79%, equivalent to 1 JND [Taylor and Creelman 1967]). On the other

hand, for Factory the metric overestimates distortions, reporting 2 JND, while they

are hardly perceivable. The repeated experiment for this scene with 5 JND distortion

lead to an acceptable 95% of correct detection. The results indicate that our metric

correctly scales disparity distortions when disparity is one of the most dominating

depth cues. For scenes with greater variety of depth cues (e. g., occlusions, perspective,

shading), perceived disparity is suppressed and our metric can be too sensitive. The

t-test analysis indicates that the distinction between 0.5 and 2 JND stimuli is statistically

significant with p-value below 0.001 for the Gabor and Terrain scenes. For Factory

such statistically significant distinction is obtained only between 2 and 5 JND stimuli.

6.4 Disparity/Luminance Model

The model presented above accounts only for variations in disparity pattern ignoring

underlying luminance signal, which, as shown earlier in section Section 2.3.3, can

significantly reduce sensitivity of the HVS to disparity and lead to degradation of depth
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impression. Here, we address this issue and present an improved disparity model for

predicting the HVS response to a disparity signal in presence of a supporting luminance

pattern. Some parts of this model as well as its derivation are similar to those presented

before. Therefore, in our description, we concentrate only on parts where those two

models differ.

6.4.1 Threshold Function

Similarly to the previous disparity model discussed in Section 6.4, the first step in

deriving the current model is to acquire a threshold function. Here, however, as we

seek covering the influence of both disparity and luminance signal on depth perception,

instead of two-parameters function, i. e., disparity frequency and amplitude, we need to

consider four-parameters function th( fd,md, fl,cl). This function for each combination

of its parameter values (disparity frequency fd and disparity magnitude md, luminance

frequency fl, and luminance contrast cl,) defines the smallest perceivable change (i.e.,

equivalent to 1 JND) in disparity magnitude (expressed in arcmins units).

The huge problem in acquiring such data necessary to model the function is

its dimensionality. However, as indicated by Legge and Gu [1989], only low-level

luminance contrast affects stereoacuity, while otherwise having little to no influence.

Further, Cormack [1991], presented a corresponding disparity-threshold function for

luminance contrast that is expressed in units of threshold multiples. Consequently, we

decided to factor out the luminance contrast dimension in order to reduce dimensionality

problem, leading to the following model:

th( fd,md, fl,cl) = s( fd,md, fl)/Q( fl,cl), (6.1)

where s is a discrimination-threshold function assuming maximal contrast and Q is a

function that compensates for the increase of the threshold due to a smaller luminance

contrast cl.

Similarly to our previous model, we express s using a general quadratic polynomial

function:

s( fd,md, fl) = p1 log2
10( fd)+ p2 m2

d + p3 log2
10( fl)

+p4 log10( fd)md + p5 log10( fd) log10( fl)+ p6 md log10( fl)

+p7 log10( fd)+ p8 md + p9 log10( fl)+ p10,

(6.2)

where p is a parameter vector obtained by minimizing the following error:

argmin
p∈R10

n

∑
i=1

((s(oi)−Δmi)/(Δmi))
2 ,

where oi are stimuli with their corresponding thresholds Δmi, as determined in our

psychophysical experiment (Section 6.4.5). Hereby, we obtain p = [ 0.3655, 0.0024,
0.2571, 0.0416, −0.0694, −0.0126, 0.0764, 0.0669, −0.3325, 0.2826] (Figure 6.9).

The use of the log domain is motivated from our previous model and lead to better

results. The range of magnitudes of disparity detection thresholds specified by our

model is in a good agreement with data in [Lee and Rogers 1997] for measured there

mid-range of disparity and luminance spatial frequencies. For more extreme ranges,

similar to [Hess, Kingdom and Ziegler 1999], we observe that, for low-frequency
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Figure 6.9: Plot visualizing slices of our model of the disparity discrimination function

for sinusoidal corrugations. We illustrate three surfaces corresponding to different

luminance frequencies (0.3 cpd, 5 cpd and 20 cpd) and a well visible contrast (above

10 JNDs). The model is limited by the disparity limit of stereopsis [Tyler 1975].

disparity corrugations, a wide range of luminance frequencies lead to good stereoacu-

ity, while for higher-frequency disparity corrugations stereoacuity is weak for low

luminance frequencies.

To determine the scaling function Q, we use the data by Cormack [1991], expressed

in units of threshold multiples cm, to which we fit a cubic polynomial in the logarithmic

domain:

T (cm) = exp(r1 log3
10(cm)+ r2 log2

10(cm)+ r3 log10(cm)+ r4), (6.3)

where r = [ −0.9468, 4.4094, −6.9054, 4.7294] is a parameter vector obtained from

fitting above model to the experimental data of Cormack [1991]. Q is then expressed

as:

Q( fl,cl) =

{
T (cl · cs f ( fl))/T (u) if cl · cs f ( fl)≤ u
1 if cl · cs f ( fl)> u , (6.4)

where cs f is the contrast sensitivity function proposed by Barten [1989] and u specifies

the level at which luminance contrast has no further influence on the disparity threshold

[Legge and Gu 1989], hence, T ′(u) = 0 implying u = 35.6769. Our fit is illustrated in

Figure 6.10.
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Figure 6.10: Our function fitting to Cormack’s data (marked by empty circles), as well

as our scaling function Q.

6.4.2 Transducer

Analogously to the previous model, the one presented here is also based on a trans-

ducer function. We build this function, relating physically-measurable quantities to the

HVS response (in JND units), directly from the threshold function th. Previously, we

assumed a perfectly-visible luminance pattern and proposed a two-dimensional trans-

ducer of disparity frequency and magnitude, which leads to a conservative prediction.

Consequently, perceived disparity is generally overestimated. Here, we extend this so-

lution to a four-dimensional transducer t( fd,md, fl,cl), where the additional parameters

fl and cl stand for luminance frequency and luminance contrast, respectively:

t( fd,md, fl,cl) =
∫ md

0
th( fd,x, fl,cl)

−1dx (6.5)

The function t( fd, · , fl,cl) : R→ R (a partial application of t to fd, fl,cl) is mono-

tonic, hence, there usually1 exists an inverse transducer (t( fd, · , fl,cl))
−1. t maps

disparity-luminance stimuli to a perceptually linear space of disparity and t−1 can be

used to reconstruct the stimuli. E.g., for disparity compression, mapping via t makes

removing imperceptible disparities easy and t−1 can be used to reconstruct the modified

disparity map. Similarly, we can build a transducer to convert luminance contrast to

a uniform space.For more details on constructing transducer functions please refer to

work by Wilson [1980] and Mantiuk et al. [2006].

In practice, a transducer function t can be evaluated by numerical integration and

stored in a table and t−1 can be implicitly defined via a binary search. Nonetheless,

in four dimensions, the memory and performance cost can be significant. A better

solution makes use of the factorization: t( fd,md, fl,cl) = t′( fd,md, fl)/Q( fl,cl), where

t′( fd,md, fl) =
∫ md

0 s( fd,x, fl)
−1dx. Functions t′ (and t′−1 if wanted) can be discretized,

precomputed, and conveniently stored as 3D arrays. The inverse transducer for a given

fd, fl,cl is then: md = t′−1( fd, Q( fl,cl) ·R , fl), where R is a JND-unit response to

disparity.

Similarly as it was done for our previous disparity model, in order to account for

the HVS limits of perceivable stereopsis, we use our threshold function only within

1only for constant luminance patterns, the function cannot be inversed
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the limits measured by Tyler et al. [1975] (Figure 6.9). Beyond this range, transducer

functions should remain flat. We enforce this by keeping the overall increase of

transducer function below one-JND fraction. This accounts for the loss of the disparity

perception maintaining at the same time the invertibility of the model.

6.4.3 Computational Model

The above transducer is valid for abstract stimuli. For real content, we decompose the

input’s luminance and disparity into corresponding Laplacian pyramids, such as it has

been done independently for luminance [Mantiuk, Myszkowski and Seidel 2006] and

disparity in Section 6.2.2.

For luminance, we compute a Laplacian pyramid C of the luminance pattern,

which contains Michelson contrast values (which are required for Q in Eq. (6.4)). For

disparity, we first compute vergence values from pixel disparity maps and then build

a Laplacian pyramid D [Burt and Adelson 1983]. The value Di(x) corresponds to

the disparity value at location x ∈ R
2 in the i-th level frequency of the pyramid i. e.,

α/2i cpd (where α ≈ 20 for our setup). To convert disparities in JND units, we apply

the transducer function (Eq. 6.5) to the values of the Laplacian pyramid. fd = α/2i and

md = Di(x). To evaluate the transducer, we also need to know the frequency fl and

contrast cl of the supporting luminance pattern.

To combine luminance and disparity, we follow the independent-channels hypoth-

esis for disparity (Section 2.3.3); stereoacuity is determined by the most sensitive

channel and remains uninfluenced by other channels. Consequently, given a disparity

frequency fd, we assume that the response is the maximum of all responses for all

higher-luminance frequencies fl in the image region corresponding to half a cycle of

fd.

Formally, the response is then:

D′
i(x) = max

j∈(0,...,i−1)
t(α/2i,Di(x),α/2 j,S j(x)), (6.6)

where S j(x) evaluates the luminance support, defined as the average of all contrast

values Cj of the j-th level of the luminance decomposition that fall into a rectangular

region σi(x) = (x− (w,w)T,x+(w,w)T) of size w = 2i around x (Figure 6.11). The

values of S can be pre-computed from C and later accessed in constant time. The

resulting structure is a Laplacian pyramid with a MIP map defined on each of its levels,

as visualized in Figure 6.11, right. Note, that computing the maximum of S j over all

levels and, then, applying a transducer independently is not equivalent.

6.4.4 Asymmetries

So far, our computational model does not account for the asymmetries described in

Section 2.3.3, as it would be necessary to study an even higher-dimensional space

including neighborhood configurations. Nonetheless, we can exploit a few observations

to derive a perceptually-motivated model that we verify practically (Section 7.7).

Although, in Section 2.3.3, we provide a couple of possible explanations for the

asymmetry effect in disparity, all of them are based on pictorial depth cues and none
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Figure 6.11: For a disparity Di(x) at location x, the model needs to involve levels

j < i in the luminance Laplacian pyramid C. In each level j, an average contrast S j(x)
of a region σi(x) (marked in red) around x is computed and its impact evaluated. For

acceleration, averages can be pre-computed in MIP maps for each level (right).
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Figure 6.12: Luminance patterns (green) influence the depth perception (orange) of the

same depth profile (blue). Some allow us to well discriminate depth (solid blue), while

others do not (dotted blue). The frontal-patch edge can benefit from the luminance

contrast between patches (a, arrow). If the luminance pattern of the deeper patch

renders localization difficult the depth step disappears (b).

of them is convincing as the arguments contradict each other. For the purpose of our

model, we develop new interpretation of the asymmetry effect in Figure 6.12, which

is based on the fact that the sensitivity to pictorial cues such as texture density or

relative size is much lower than sensitivity to binocular disparity in the considered

depth range [Cutting and Vishton 1995]. Through this, we would like to argue that

this effect comes mostly from the binocular disparity cue. This can be observed using

anaglyph glasses in Figure 2.15. Based on our interpretation of this effect we explain

here how it can be handled in our disparity model.

In fact, in order to perceive a sinusoidal depth corrugation, peaks as well as

valleys of the sinusoid need to be well supported by luminance contrast. However, as

illustrated in Figure 6.13, this is not always the case. To account for the full wave, a 3

× 3 neighborhood at the given level of the Laplacian decomposition is evaluated and

the minimum response chosen. Hereby, we ensure that a full cycle is well supported

and visible.

While this extension already explains several cases in Figure 2.15, it is insufficient

to explain the entire asymmetry. The texture swap would not yet be detected to

influence depth perception. In order to better model the response, we need to take

disocclusion into account. In fact, the occluding patch’s edge introduces a high-contrast

luminance edge in superposition with the patch beneath. If they are present in both

views (left and right eye), these high frequencies allow us to localize the edge in space

- we disregard pathological cases where disparity and luminance frequency perfectly

agree. Consequently, we propose to evaluate the luminance contrast for both views and

use the maximum response. Hereby, a point on the deeper patch will be disoccluded
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Figure 6.13: Disparity response attenuation due to weak support in perceived lumi-

nance contrast. The physical contrast in the valleys of sinusoidal depth function is of

low spatial frequency, for which the HVS is less sensitive, and of too small magnitude

to make the depth corrugation visible.

in one view and reveal its high-frequency luminance neighborhood, and points on the

edge will maintain a high-contrast edge in both views. Also note, that this effect affects

not only the points directly on the edge, but also in a small neighborhood near the

edge. This relates to findings on backward-compatible stereo Section 2.3.2. Similarly

to the Cornsweet effect for luminance, the HVS extrapolates depth information to

neighboring locations. Although heuristic, this solution performs well in practice

(Section 7.7).

6.4.5 Measurements

To derive the parameters of s (Eq. 6.2), our experiment explores: disparity frequency

fd (measured in cpd), disparity magnitude md (measured in arcmins), and luminance

frequency fl (measured in cpd). The construction of the experiment is similar to the

one performed for the disparity model in Section 6.2.1. Viewing conditions as well

as procedure of selecting subjects were the same. The biggest difference is the fact

that we needed to consider different luminance patterns as we want to measure the

influence of luminance on disparity perception. We also restricted current experiment

to shutter-glasses-based screen that was used earlier. Here, we describe only stimuli

and task that was used, and for other details (i. e., equipment and participants) please

refer to Section 6.2.1.

Stimuli

All stimuli are horizontal sinusoidal disparity corrugations with luminance noise of

a certain frequency. First, we create a luminance pattern by producing a noise of

frequency fl and scale it to match the maximal reproducible contrast on our display.

Using such a texture excludes any external depth cues, such as shading. Next, we create

a disparity pattern; a sinusoidal grating with frequency fd and magnitude md. Such

disparity gratings do not produce occlusions. Finally, the luminance pattern is warped

according to the disparity pattern to produce an image pair for the observer’s left and

right eye similarly as it was done in previous experiment. All steps are adjusted to the

viewing conditions, i. e., the screen size and viewing distance. We assume standard

intra-ocular distance of 65 mm.
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Task

In this experiment, we seek measuring a disparity-discrimination threshold for stimuli

defined in three-dimensional parameter space. For a given stimulus o = ( fd,md, fl),
we run a threshold estimation procedure. In each step, we show two stimuli o and

o+[0,Δmd,0]. One located on the left-hand side of the screen and the other on the

right. The position is randomized. The task of the participant is to judge which

stimulus exhibits larger depth magnitude and choose via the “left” or “right” arrow

keys. Depending on the answer, Δa is adjusted in the next step using the QUEST

procedure [Watson and Pelli 1983]. When the standard deviation of the estimated value

is lower than 0.05, the process stops. We decided to use QUEST instead of PEST,

which was used in previous model, as the first one turns out to converge much faster

which was crucial in this case as the dimensionality of the problem is bigger then

previously.

In total there were 24 participants who took part in the experiment (12 women and

12 men). They were all between 22 and 30 years old. One participant was discarded

due to very high thresholds (on average 3 times higher than thresholds of others). Each

participant performed 35 adjustment procedures. One session took from 30 to 100 min.

Subjects were allowed to take a break whenever the felt tired. In total, we obtained 805

measured thresholds to which we fit our model.

6.4.6 Improved Response Prediction and Metric

Including information about luminance pattern to our disparity model allows to success-

fully detect the human inability to perceive changes of disparity when the luminance

support is not adequate due to, for example low luminance contrast because of fog

or depth-of-field. A comparison of the HVS response predicted by the model that

takes into account luminance information and the disparity-only model is shown in

Figure 6.14.

The new model, similarly to the one that does not account for luminance infor-

mation, can be used to predict the perceived difference between two stereo images: a

reference image and a second image which underwent a distortion, such as compres-

sion. The construction of this metric is similar to the construction of the previous one

Section 6.3. We first use our model to map both input images into our perceptually-

linear space. The transducer function is applied after the phase uncertainty operation.

Per-band differences indicate the detectability of disparity changes, computed by a

simple subtraction. All bands can be combined using Minkowski summation to pro-

duce a spatially-varying difference map. We use the same parameters as those that

were obtained in the process of calibrating the disparity-only metric for both—phase

uncertainty and Minkowski summation. The difference between the metric that uses

the new luminance-contrast aware disparity model and the one that does not account

for luminance pattern is shown in Figure 6.15. Previous metric is too conservative and

report differences which are invisible due to weak luminance signal (false positives).

In order to evaluate the new model, we conducted an additional user study with

17 participants. We wanted to verify how well our metric predicts actual JND values.

We used a stereo image from Figure 7.10 and applied a scaling to the disparity in

order to create images that differ in depth perception. One image was modified to
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Figure 6.14: Comparison of perceived disparity as predicted by the previous model that

ignores image content (left) and the new model that accounts for underlying luminance

pattern(right). Responses per frequency band and the combined response are shown

for both, as well as the original stereo image with the multi-band decomposition of the

luminance pattern (middle).

match an average error of 0.5 JND (with minimum 0.4 JND and maximum 0.8 JND).

For a second image the average difference was 3 JND (with minimum 2.5 JND and

maximum 3.5 JND). We showed the modified images side by side (randomized) with

the original image and asked about perceived differences. Each pair was shown ten

times in randomized order. The 0.5 JND difference image was detected in 58 % cases,

which is close to a random answer, as expected. For the 3 JND case the probability of

the detection was 91 %.

6.5 Discussion

Previous experiments concerning depth discrimination thresholds [Julesz 1971; Blake-

more 1970; Anstis, Howard and Rogers 1978; Poggio and Poggio 1984; Coutant and

Westheimer 1993; Lee and Rogers 1997; Prince and Rogers 1998; Bradshaw and

Rogers 1999; Hess, Kingdom and Ziegler 1999; Nishina 2003; Sato 2004] covered

small ranges of parameters values (i. e., disparity frequency/amplitude and luminance-

contrast magnitude/frequency). Usually, also parameters interdependence was ignored.

In our models, we considered bigger ranges of parameters as well as their interdepen-

dence. Further, previous findings were based on mutually very different setups and

viewing conditions e. g., they require participants to fixate points or bars, sometimes for

only a short time. Our thresholds are mostly higher than what is reported for physical

stimuli in the literature but we focused on current off-the-shelf stereo equipment. The

difference implies that there is still room for improvement of modern equipment, but

also that it is worth deriving thresholds for existing hardware explicitly.

Our disparity models are based on a couple of simplifying assumptions. We do

not consider temporal effects as those described by Lee et al. [2007] although they

are not only limited to high-level cues, but also present in low-level pre-attentive

structures [Palmer 1999; Howard and Rogers 2002]. It would require adding additional
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Figure 6.15: When stereo content (luminance, a; disparity, b) is manipulated (disparity,
c) we quantify the perceived change considering luminance and disparity (d). Ignoring

luminance (e) produces wrong predictions e. g., for low-texture areas, fog, or depth-of-

field (arrows).

dimensionality to our experimental data, and we relegate such an extension as future

work. Furthermore, our measurements are performed under the assumption that subjects

accommodate onto the screen. This is valid for current equipment, but might not hold

in the future. Our measurements consider only horizontal corrugations, while the

stereoscopic anisotropy (lower sensitivity to vertical corrugations) can be observed for

spatial corrugations below 0.9 cpd [Bradshaw and Rogers 1999], but our metric could

easily accommodate for anisotropy by adding orientation selectivity into our channel

decomposition [Daly 1993; Lubin 1995].

We do not include the influance of chromatic stereopsis as it is less contrast sen-

sitive, leads to weaker stereoacuity, and feature a more-limited disparity range with

respect to its luminance-contrast counterpart [Kingdom and Simmons 2000]. We also

do not consider image brightness because stereoacuity weakly depends on luminance

in mesopic and photopic levels (over 0.1 cd/m2), which are typical for standard stereo

3D displays [Howard and Rogers 2002, Chapters 19.5.1]. To reduce dimensionality,

we decided to exclude the influence of luminance-contrast magnitude from our mea-

surements for the second model; stereo increment thresholds per luminance spatial

frequency channel actually increase for low contrast as a power-law function [Rohaly

and Wilson 1999, Fig. 6]. We considered this influence in a simplified form by ex-
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pressing the signal in each luminance channel in JND units including its normalization

via the CSF function. We then compute stereoacuity per channel using a compressive

function (Eq. 6.4), which we derived based on the data from [Cormack, Stevenson and

Schor 1991].

In our models we do not incorporate other depth cues than binocular disparity. For

example we do not include the influence of color, whereas it is known for centuries

[Livingstone 2002] how e. g., aerial perspective (the haze effect) greatly helps the

depiction of space. As for most luminance perception models and metrics, higher-level

processing is beyond the scope of this dissertation. A perceptual model that includes

an analysis of the shape and its properties (e. g., its curvature, moments, etc.) would be

an exciting avenue of future research.

Concerning the generality of our models, for the second model which accounts for

luminance pattern we did not repeat the experiment for different display technologies

(e. g., anaglyph, polarization), which may result in a slightly different stereoacuity.

However, measurements with different equipment are not a problem and our model and

techniques remain valid. For displays with different parameters (e. g., size, resolution,

contrast ratio), both our models are directly applicable; they use physical values which

can be computed from the display specification and viewing conditions. Furthermore,

in Chapter 7 we present a number of techniques that use our model and are evaluated

on a different group of people than the threshold measurements. The positive results

of the study suggest that, although stereoacuity varies among people, our models are

general enough to be successfully used in practice.

Please also note that our metrics measure perceived disparity differences, which is

different from viewing comfort or immersion in the environment which are important

problems when dealing with stereo. However, an automated computational model of

perceived disparity like ours could be a critical component when developing dedicated

algorithms. Similarly, the prediction of disparity distortions is merely one of many

factors which contributes to the perceived realism of a 3D scene, image quality itself as

well as the visual comfort (e. g., eye strain) [Meesters, IJsselsteijn and Seuntiens 2004]

are further interesting aspects.

Finally, our models and metrics, once acquired, are easy to implement and efficient

to compute, allowing a GPU implementation which was used to generate all results

presented in this dissertation at interactive frame rates.

6.6 Conclusions

We identified the interdependence of disparity magnitude and spatial frequency in a

consistent set of stimuli using a psycho-visual experiment. By fitting a model to the

acquired data, we derived metrics that were shown to perform the challenging task of

predicting human disparity perception.

A user study on the impact of luminance stimuli on disparity perception allowed us

to derive a new disparity-sensitivity function, which enabled us to construct a model

that captures and models the interaction between disparity and luminance. To our

knowledge, this model is the first of its kind. We also explained how to integrate certain

neighborhood-related effects, such as asymmetry. In the next chapter (Chapter 7), we

show how powerful our disparity models are in the context of disparity manipulations.
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We present there a number of applications where the models either improve results or

allow for completely new edits.

In future work, one could consider temporal effects and higher-level cues (shading,

texture, bas-relief ambiguity, etc.) that would complement our approach. The effects

of conflicting stimuli (accommodation, image content, etc.), currently, remain mostly

unclear. We believe that models such as ours will be crucial for stereo images and

video processing.



7
Perceptually Driven Disparity

Manipulations

While in the past only an anaglyph stereo was accessible on the consumer-level market,

today, we find a variety of techniques to produce stereo effects ranging from polariza-

tion or shutter glasses to autostereoscopic displays [Onural et al. 2006; Matusik and

Pfister 2004]. This trend is underlined by the increasing amount of stereo content in

the form of TV broadcasts, feature films, and computer games. Although the quality of

the stereo equipment is constantly improving, the reproducible depth range is smaller

than what is observable in the real world (Section 2.3.4). Ignoring this limitation can

result in viewing discomfort or even loss of stereo impression when the left and right

images can no longer be fused.

Furthermore, the viewing conditions in which the content is observed do not

necessarily correspond to conditions for which the content is prepared. For example,

the distance between the virtual cameras might not correspond to the actual eye distance

of the observer. Similarly, one might have made assumptions concerning the distance

to the screen, or even the type of screen itself, which can substantially differ from later

viewing conditions. Especially for movies, where stereo equipment, observers and

their position are unknown such differences in viewing conditions can easily lead to

perceivable distortions of the stereo content (Section 3.3.3).

Therefore, although the general creation of image pairs is scene- and artist-dependent,

limitations in stereo content reproduction, as those presented above, make the process

much more complex than producing regular 2D material [Mendiburu 2009]. Often, to

assure viewing comfort, reduce distortions coming from different viewing conditions,

or allow artistic adjustment, the stereo content needs to be manipulated (Section 3.3.3).

In many situations, such modifications can be performed during the production step,

however, sometimes they need to be customized once the viewing conditions are known.

This motivates researchers to develop 3D stereo content manipulation techniques that

are easy, intuitive and can be applied automatically.

The disparity models as well as the disparity metrics (Chapter 6) were shown to be

powerful tools for analyzing stereo content manipulations. In this chapter, we show

that they also enable designing new disparity manipulation techniques which allow

for taking into account human perception. This, as demonstrated in our user studies,

can significantly improve previous methods. The knowledge on human perception,

especially human abilities in discriminating depth differences, is also interesting for

compression applications. We show that using our models we can improve disparity

compression without impairing visual quality of e. g., broadcast footage.

99
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7.1 Overview

In this chapter, we show a number of techniques which utilize previously proposed dis-

parity models and metrics (Chapter 6). We show advantages of using them at all stages

of the stereo content post-processing.The methods presented here include disparity

manipulations in the perceptual space, disparity optimization, disparity compression,

apparent stereo manipulations as well as hybrid images. In this chapter we also describe

a number of user studies which validate results of our techniques.

Most of the methods proposed here take an advantage of the perceptual space

introduced in the previous chapter (Section 6.2.2). By performing manipulation in this

space, we directly introduce changes to a predicted response of the HVS to disparity

patterns, which automatically accounts for disparity sensitivity function of the HVS

(Section 2.3.2). This makes the performed edits more meaningful. The advantage of

using similar methods has been already shown for luminance manipulation [Mantiuk,

Myszkowski and Seidel 2006]. In order to perform such edits, we first transform

pixel disparity to the perceptual space using the pipeline depicted in Figure 6.5. After

applying desired operations, we use the inverse pipeline (Section 6.2.2) to transform

the modified response of the HVS back to pixel disparity, which is later used for

resynthesizing the left and right view so the output stereo image reflects the manipula-

tions. To perform the latter step we use our technique presented in Chapter 8. Besides

the perceptual space, some of our applications (e. g., disparity optimization) utilize

disparity metrics (Sections 6.3 and 6.4.6). This allows for stereo-content editing which

minimizes visible distortions.

The rest of the chapter is organized as follows. First, in Section 7.2 we present

simple operations in the perceptual space that can be applied either for artistic purposes

or to fit the disparity range of stereo images into the comfort zone. Next, in Section 7.3,

we present a more sophisticated method, where disparity is optimized using our

disparity metrics, minimizing perceived distortions. Since one of our disparity metrics

can account for underlying luminance pattern, we can also optimize content for multi-

view autostereoscopic displays where a blur needs to be introduced in order to avoid

inter-view aliasing. Minimizing distortions is also crucial for content compression. In

Section 7.4, we present our disparity compression method, which can reduce disparity

storage information without perceivable loss of quality. In Section 6.2.2, we showed

that stereo perception depends on the viewer as well as the display device. Using

our models we can perform so-called personalization (Section 7.5), which adjusts

stereo content so it appears similarly to different observers regardless of the equipment.

Often, in order to fit scene disparities within the comfort range, the scene needs to be

flattened. In Section 7.6, we present a technique that can enhance stereo impression

without expanding disparity range by exploiting the Cornsweet Illusion. The same

method allows us to compute backward-compatible stereo images which appear almost

ordinary when observed without stereo equipment, but convey a stereo impression if

the equipment is used. Our luminance-disparity model predicts how depth perception

is affected by underlying luminance pattern. This is utilized in Section 7.7, where we

demonstrate how stereo impression can be improved when only luminance pattern is

manipulated. In Section 7.8, we present a technique, which, using information about

the HVS sensitivity to different disparity corrugation frequencies, computes stereo

images that depict different stereo content depending on the viewing distances. This is

similar to hybrid images for luminance proposed by Oliva et al. [2006]. In Section 7.9,
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Original depth

Pixel disparity

Disparity pyramid Enhanced disparity Enhanced stereo Original color

Processing

Figure 7.1: From left to right: Starting from an original depth map a pixel disparity

map is computed and then a disparity pyramid is built. After multi-resolution disparity

processing, the dynamic range of disparity is adjusted and the resulting enhanced

disparity map is produced. The map is then used to create enhanced stereo image.

we conclude providing directions for future work.

In all user studies presented here, viewing conditions as well as the procedure of

selecting subjects were the same as for the measurements performed in Section 6.2.1.

We only restricted the experiments to the shutter-glasses-based screen that was used

earlier. In this chapter, we describe only stimuli and tasks, and for other details (i. e.,

equipment and participants) please refer to Section 6.2.1.

7.2 Disparity Manipulation in Perceptual Space

Global operators [Pratt 1991] that map disparity values to new disparity values globally,

can operate in our perceptually uniform space, and their perceived effect can be

predicted using our metric. To this end, disparity is first perceptually linearized, i. e.,

converted into a perceptually uniform space via our disparity model (Section 6.2), then

modified, and converted back. Below, we describe more precisely how it is done in

practice.

7.2.1 Pipeline

An overview of our approach for manipulating disparity in the perceptual space is

shown in Figure 7.1. As input of our algorithm we use a linearized depth buffer along

with corresponding RGB color image. Based on this depth information, we derive, as

an output, a disparity map that defines the stereo effect.

To compute the disparity map, we first convert the linearized depth into pixel

disparity based on a mapping between scene-centric to viewer-centric model. The pixel

disparity is converted then to the perceptually uniform space (Section 6.2.2), which

also provides a decomposition into different frequency bands. Our methods will act

on these bands to yield the output pixel disparity map which defines the enhanced

stereo image pair. Given the new disparity map, we can then warp the color image

according to this definition. Our approach is orthogonal to the particular technique

used for warping. Here, we use our method described in Chapter 8. Below, we present

two global operations that can be performed using such an approach.
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Figure 7.2: Disparity re-scaling preformed in our perceptually-uniform space preserves

important disparities that can be lost when global scaling is applied. Our scaling com-

presses big disparities more, as our sensitivity in such regions is small, and preserves

small disparities where the sensitivity is higher. In the lower insets, pixel disparities

(left) and the difference to the original (right), as predicted by our metric, are shown.

Simple scaling of pixel disparity results in loss of small disparities, flattening objects as

correctly indicated by our metric in the flower regions. Our perceptual scaling preserves

detailed disparity resulting in smaller and more uniformly distributed differences, again

correctly detected by our metric.

7.2.2 Non-linear disparity-retargeting

Non-linear disparity-retargeting allows us to match pixel disparity in 3D content to spe-

cific viewing conditions and hardware, and provides artistic control [Lang et al. 2010].

The original technique uses a non-linear mapping of pixel disparity, whereas with our

model, one can work directly in a perceptual uniform disparity space, making editing

more predictable. Furthermore, our difference metric can be used to quantify and

spatially localize the effect of a retargeting (Figure 7.2).

7.2.3 Histogram equalization

Histogram equalization can use our model to adjust pixel disparity to optimally fit

into the perceived range [Pratt 1991; Mantiuk, Myszkowski and Seidel 2006]. Again,

after transforming into our space, the inverse cumulative distribution function c−1(y)
is built on the absolute value of the perceived disparity in all levels of the Laplacian

pyramid and sampled at the same resolution. Then, every pixel value y in each level, at

its original resolution is mapped to sgn(y)c−1(y), which preserves the sign.

7.3 Disparity Optimization

One of our new applications is perceptual disparity optimization, which automatically

fits the disparity of stereo content into a limited range by analyzing disparity via our

disparity model. The objective is to achieve a small difference between the original

and the re-mapped content according to our disparity metrics presented in Chapter 6.

Due to many non-linearities of human disparity-luminance perception the optimization
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is challenging and the search space of all possible disparity re-mappings is difficult to

tackle.

7.3.1 General Case

To make the problem tractable, we restrict the search space to the subset of all

global and piecewise-defined mapping curves, as done for automatized tone map-

ping [Mantiuk, Daly and Kerofsky 2008] (Figure 7.3). Such curves can be defined

using a small number of n (we use n = 7) control points with values at fixed locations

P := {(0,y0), . . . ,(1.0,yn)} combined with a simple (e. g., piecewise-cubic) reconstruc-

tion. Given the original stereo content A and a remapping r(A,P) of A using the control

Disparity
re-mapping

Stereo image +
Disparity map

Stereo
metric

Error
func on

Figure 7.3: Our disparity optimization. From left to right: Input is a stereo image and

a disparity map. A disparity mapping P is applied to the input. Our metric computes

the difference between input and remapped content. The difference is converted into a

single error value, and a new mapping P is chosen. The process is repeated until the

error is low enough or a fixed iteration number is reached.

points P, simulated annealing is used to minimize the integrated perceived difference

over the image domain Ω
min
P∈Rn

∫
Ω

A	 r(A,P)dx,

where the 	 operator denotes our perceptual metric of disparity difference. By im-

plementing our method on a GPU, the disparity optimization can be performed at

interactive speeds e. g., while a user navigates inside the scene (Figure 7.4). In order

to maintain temporal coherence, we use the last frame’s solution as the initial guess

for P in the next frame. We can further smoothly interpolate previous solutions over a

couple of frames to improve the smoothness of the animation. A similar approach was

recently used in [Oskam et al. 2011].

7.3.2 Multi-view Autostereoscopic Display

Disparity optimization is particularly important for multi-view auto-stereoscopic dis-

plays, where the affordable disparity range is very shallow. Beyond this range depth-

of-field is usually applied in order to avoid interperspective aliasing as described by

Zwicker et al. [2006]. Therefore, two extreme strategies (Figure 7.5, top and middle)

are possible. Either, the whole scene needs to fit into the small range where everything

can be sharp or a bigger range can be used, but then prefiltering (blur) is necessary.

The trade-off between these two solutions is not obvious. Our metric which accounts

for underlying luminance pattern can predict the strength of perceived depth in the

presence of blur due to depth-of-field. Therefore, using our optimization scheme along

with this metric, leads to an optimal trade-off between the sharpness and depth range.

Two modifications are required: First, based on the display specification, the focal
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Figure 7.4: Our optimization compared to linear disparity mapping. Insets visualize

mapping curves and disparity perception loss compared to the original stereo image, as

reported by our metric.

range (φ0,φ1) has to be computed. Second, a depth of field operator d(A,φ0,φ1) has to

be applied to the luminance content A [Zwicker et al. 2006]. The solution is given by:

argmin
P∈Rn

∫
Ω

A	d(r(A,P),φ0,φ1))dx

An example of this optimization is presented in Figure 7.5, bottom.

7.3.3 Validation

To evaluate our disparity optimization, we compared it to other techniques in a pair-

wise comparison with three different scenes (Figure 7.6) and four different techniques:

camera-parameter adjustment [Jones et al. 2001; Oskam et al. 2011] (CAM), disparity

scaling in the perceptual space (PCT), the proposed here optimization scheme without

(OPT-D), as well as with accounting for the luminance support (OPT-CD). For each

method we ensured that the resulting disparities spanned the same range. In total, 18

pairs of stereo images were shown in a randomized order to the 17 participants who

were asked to indicate which stereo image exhibits a better depth impression. In order

to analyze the obtained data we computed scores (the average number of times each

method was preferred) and computed a two-way ANOVA test. To reveal the differences

between the methods, we performed a multiple comparison test. Detailed results of the

study are presented in Figure 7.7.

The study showed, that for the scenes Dinos (courtesy of [Lee, Eisemann and

Seidel 2009]) and Gates, our optimization was preferred over all other methods and

the effect was significant. The lower performance of CAM, as well as PCT is due

to the inability to effectively compress disparities in regions that are less crucial for

depth perception. In the Comic scene, the difference between OPT-CD and CAM is not

statistically significant for p = 0.05, but it is when assuming p = 0.1. This observation

indicates that in some cases our optimization may perform similarly to others. The

Comic scene is also interesting for another reason; the biggest depth-range compression

can be obtained in the back, due to the low luminance frequency in the sky, which is

correctly detected by our model. The CAM solution mostly affects the background,

actually even a bit too much. The optimization more evenly distributes the depth

impression (refer to the images in additional materials) and while the foreground looks

similar, the background has more depth information. Nonetheless, this difference is
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Figure 7.5: Trade-off between the depth range and sharpness on a multi-view auto-

stereoscopic display. The insets show disparity mapping functions and the loss of

depth perception due to blur. Top to bottom: simple mapping that fits entire scene in

the depth-of-field region (marked in white on curve plots), disparity mapping using

the entire pixel disparity range, our mapping. Our mapping leads to a good balance

between depth perception and depth-of-field constraints.

very localized in the scene. When telling people afterwards to consider the farther

tree and clouds, they saw the previously-missed improvement. Generally, the results

show that including luminance in the model improves the performance of the disparity

optimization significantly.

We also illustrate the usefulness of our optimization for autostereoscopic dis-

plays, where depth-of-field and disparity perception are linked and, hence, using our
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Figure 7.6: All stimuli used for our study evaluating the disparity optimization method.

luminance-disparity model presented in Section 6.4 is crucial. We used the examples

from Figure 7.5. We compared our method separately to the mapping that linearly

fits everything into the depth-of-field region and the one that uses the full display-

disparity range. 13/14 out of 17 participants preferred the depth impression delivered

by our method to using the entire depth-of-field/disparity range. A two-sided binomial

statistical test revealed that this result is statistically significant with p < 0.05.



7.4. STEREO IMAGE AND VIDEO COMPRESSION 107

Av
er

ag
e 

sc
or

e
2.75

2.32
2.82

2.63

2.06

1.06
1.62 1.58

0.75

1.56

0.62
0.97

0.44

1.06
0.94

0.82

0

1

2

3

Dinos Comic Gates All

OPT-D
CAM
PCT

OPT-CD

Figure 7.7: Statistical data obtained in our study. The error bars show 95 % confidence

intervals.

Ve
rg

en
ce

JN
D

JN
D

JN
D

Ve
rg

en
ce

Th
re

sh
ol

d
Compressed pixel disparity

Original pixel disparity

Space

Space
Space

Space

SpaceInverse model

JN
D

JN
D

JN
D

Space

Space

Space

M
od

el

O
ut

pu
t

In
pu

t

Band n

Band 0

Band 1

Band n

Band 0

Band 1

Figure 7.8: Perceptual disparity compression pipeline: An original pixel disparity

(vergence) image (top left), is transformed into JND (middle). In this space, disparities

which are below one JND (red dotted line) can be identified and removed, because they

are not perceived (right). Optionally, a threshold of more than one JND can achieve

more aggressive compression. The compressed disparity will have less details, as those

which are not perceived are removed (bottom left).

7.4 Stereo Image and Video Compression

Our models can be used to improve the compression efficiency of stereo content. Key

to many perceptual compression approaches is to map the signal into a perceptually

uniform space, such that the perception of artifacts can be reliably controlled. This is

for example the idea behind classic image compression such as JPEG [Taubman and

Marcellin 2001]

We follow this idea and assuming a disparity image as input, we first convert

physical disparity into perceived disparity (Figure 7.8). Here, using the model that

accounts only for disparity signal. In perceptual space, disparity below the detection

threshold (one JND) can be safely removed without changing the perceived stereo

effect (Figure 7.2). More aggressive results are achieved when using multiple JNDs. It

would further be possible to remove disparity frequencies beyond a certain value. As
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shown by Tyler [1975] subjects cannot perceive disparity corrugations with a frequency

above 3-5 cpd. This, however, requires further verification and was not used in our

results, e. g., Figure 7.9.

Original
538 kb

Compressed
226 kb

Figure 7.9: Disparity compression can be improved by operating in our perceptually-

uniform space. The figure shows a stereo image, and the same image with disparities

below 1 JND removed. The insets show pixel disparity and file size when compressing

with LZW. Our method detects small, unperceived disparities and removes them.

Additionally it can remove spatial disparity frequencies that humans are less sensitive

to.

Above results can be improved when luminance information is taken into account.

For this purpose our model that accounts for luminance pattern can be used. This

leads to more aggressive compression in places where luminance signal weakens

disparity perception. An example comparing both compression methods is presented

in Figure 7.10.

Comparison In order to show that taking into account luminance information im-

proves results, we compared compression performed using both models. For this

purpose we used the examples from Figure 7.10. We compared the original stereo

images to ones where all disparities below 2 JND were removed using the disparity-

only model, as well as the model that accounts for underlying luminance pattern. We

showed the modified images side by side (randomized) with the original image and

asked about perceived differences. Each pair was shown ten times in randomized order.

We asked 17 participants which compression technique produces images that are closer

to the original in terms of depth. In 51 % the method with the model accounting for

luminance was chosen as the one closer to the original. This suggests that, although

the compression with luminance taken into account reduces storage size, it does not

introduce additional perceivable artifacts.

7.5 Personalized Stereo

When displaying stereo content with a given physical disparity, its perception largely

depends on the viewing subject and the equipment used. It is known that stereoacuity

varies drastically for different individuals, even more than for luminance [Coutant
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Figure 7.10: Comparison of disparity compression using model with luminance

and the more conservative one without luminance. The first method can account for

regions where poor luminance pattern reduces sensitivity to depth changes. Therefore,

it can remove more imperceptible signal than previous techniques. In insets we show

zoomed-in parts of pixel disparity maps. The size corresponds to the size of our

disparity representation compressed using LZW.

and Westheimer 1993; Richards 1971]. In our applications we use an average model

derived from the data obtained during experiments. Although it has the advantage

of being a good trade-off in most cases, it can significantly over- or underestimate

discrimination thresholds for some users. This may have an impact especially while

adjusting disparity according to user-preferences. Therefore, our model provides the

option of converting perceived disparity between different subjects, between different

equipment, or even both. To this end a transducer (Section 6.2.2), acquired for a

specific subject or equipment, converts disparity into a perceptually uniform space.

Applying an inverse transducer acquired for another subject or equipment achieves a

perceptually equivalent disparity for this other subject or equipment.

7.6 Apparent Stereo

As mentioned in the beginning of this chapter, it is both a technical and artistic challenge

to depict three-dimensional content using flat two-dimensional screens. On the one

hand, the content needs to fit within the limits of a given display technology and at

the same time achieve a comfortable viewing experience. Given the technological

advances of 3D equipment, especially the latter increases in importance. Modifications

to stereo content become necessary that aim at flattening or even removing binocular

disparity to adjust the 3D content to match the comfort zone in which the clash between

accommodation and vergence stays acceptable. However, applying such modifications
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can lead to a reduction of crucial depth details.

In this section we present a disparity manipulation technique that does not expand

overall disparity range of a stereo image but still is able to enhance depth impression.

This method builds upon the Craik-O’Brien-Cornsweet effect (Section 2.3.2), a visual

illusion, which uses so-called Cornsweet profiles to produce an illusion of depth. Ap-

plying it skilfully at depth discontinuities allows, as shown in this part, to either enhance

depth impression or reduce the overall disparity range to ensure a comfortable yet

convincing stereo experience. An interesting case is our backward-compatible stereo,

for which the disparity is low enough that overlaid stereo pairs seem almost identical,

however, stereo can be experienced when the images are viewed stereoscopically. One

additional advantage of the Cornsweet disparity is its locality that enables apparent

depth accumulation by cascading subsequent disparity discontinuities. This way the

need to accumulate global disparity is avoided leading to smaller disparity range of

stereo image.

We illustrate effectiveness and usefulness of our technique by showing that Corn-

sweet illusion, as previously applied to brightness, can increase stereo perception

without introducing a large overall disparity. We present a way of respecting potential

limits of a given display technology improving at the same time depth impression.

Furthermore, a user study measures the performance of backward-compatible stereo

and our disparity enhancement.

In the following part, we present the various manipulations we apply to the initial

disparity map. All of them are performed in the perceptually uniform space, therefore,

before applying them, similar pipeline to the one presented in Section 7.2.1 needs to

be used. Depending on the purpose (retargeting, enhancement, backward-compatible

stereo...), the applied operations differ.

7.6.1 Retargeting

One of our main applications of the Conrsweet Illusion is to use it in the context of

stereo content retargeting. Hereby, we mean modifying the pixel disparity to fit into

the range that is appropriate for the given device and user preferences (distance to the

screen and eye distance). Typically, such retargeting implies that the original reference

pixel disparity Dr is scaled to a smaller range Ds. Consequently, in Ds some of the

information may get lost or become invisible during this process. Inspired by previous

work [Krawczyk, Myszkowski and Seidel 2007] in the field of tone-mapping, we want

to compensate this loss by adding Cornsweet profiles Pi to enhance the apparent depth

contrast.

As the perceptual decomposition is performed using a Laplacian pyramid, the

bands correspond to Cornsweet profile coefficients (each level is a difference of two

gaussian levels, which remounts to unsharp masking). Hence, modifying higher bands

in the pyramid remounts to modifications in form of Cornsweet profiles. E.g., adding

the sum of these higher bands would directly yield unsharp masking. In practice, it is

a good choice to only involve the top five bands of the perceptual decomposition to

add the lost disparities.We estimate the loss of disparity in Ds with respect to Dr by

comparing the disparity change in each band of a Laplacian pyramid:

Ri =Cr
i −Cs

i
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Original stereo Enhanced by 2JND

Enhanced by 4JND Enhanced by 8JND

Figure 7.11: We can change the effect of depth perception by increasing JNDs. In

this way, we can uniformly exaggerate the depth impression (“Big Buck Bunny” c© by

Blender Foundation).

where Ri are the corrections in a given band i, Cr
i and Cs

i are the bands of the reference

and distorted disparity respectively.

In theory, one might be tempted to simply add all Ri directly on top of Ds. Effec-

tively, this would add Cornsweet profiles to the signal, but care has to be taken that the

resulting pixel disparity does not create disturbing deformation artifacts and remains

within the given disparity bounds. In order to prevent disturbing distortions, we limit

the Corsnweet profiles directly in the perceptual space, as detailed in the following.

7.6.2 Limiting Cornsweet profiles

To assure that added Cornsweet profiles do not yield a too large disparity range, we

manipulate the corrections Ri. A first observation is that all values are in JND units,

hence, we can limit the maximum influence of the Cornsweet profiles, by clamping

individual coefficients in Ri so they do not exceed a limit given in JND units. Clamping

is a good choice, as the Laplacian decomposition of a step function exhibits the same

maxima over all bands situated next to the edge, is equal zero on the edge itself, and

decays quickly away from the maxima. Because each band has a lower resolution with

respect to the previous, clamping of the coefficients lowers the maxima to fit into the

allowed range, but does not significantly alter the shape. The combination of all bands

together leads to an approximate smaller step function, and, consequently, choosing

the highest bands leads to a Cornsweet profile of limited amplitude. In Figure 7.11, we

show how different limits result in different enhancement strength.

Unfortunately, this will not yet ensure that the enhancement layer R (composed of

all Ri) combined with Ds will not result in too large value. Clamping is a straightforward
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Figure 7.12: Different approaches for limiting Cornsweet profiles. All of examples

were limited to the range [−0.5,0.5]. A simple unsharp-masking profile can exceed the

range of possible disparities while the image is enhanced (a). Logarithmic suppression

(b) limits big profiles but at the same time those that could stay bigger (in the far plane)

get almost invisible. Our local method (c) limits profiles locally preserving small ones.

way of limiting the profiles R, but it results in flat areas whenever the disparity bounds

are exceeded. The second possibility is to scale profiles using a monotonic mapping

function. Here, a good mapping seems to be a logarithmic function that favors small

variations, which we do not need to clamp as they usually do not result in an exceeded

disparity range. Nonetheless, an important observation is that some parts of Ds might

allow for more aggressive Cornsweet profiles than others without exceeding the comfort

zone. Therefore, instead of using a global method, we propose to locally scale the

Cornsweet profiles to best exploit local disparity variations and to make sure that

most of the lost contrast is restored. Wherever the limits are respected, these scaling

factors are simply one, otherwise, we ensure that the multiplication resolves the issue

of discomfort. Scaling is an acceptable operation because the Cornsweet profiles vary

around zero.

Deriving a scale factor for each pixel independently is easy, but if each pixel were

scaled independently of the others, the Cornsweet profiles might actually disappear.

In order to maintain the profile shape, scaling factors should not vary with higher

frequencies than the scaled corresponding band. Hence, we compute scale factors per

band.

One observation is that we relied on a pyramidal decomposition, consequently, Ri
has a two times higher resolution than Ri+1. This is important because when deriving a

scaling Si per band, it will automatically exhibit a reduced frequency variation. Hence,

we derive per-pixel-per-band scaling factors Si that ensures that each band Ri when

added to Ds would not exceed the limit. Next, these scaling factors are “pushed down”

to the highest resolution from the lowest level by always keeping the minimum scale

factor of the current and previous levels. This operation results in a high-resolution

scaling image S. We finally divide each S by the number of bands to transfer (here, five).

This ensures that Ds +∑i RiS respects the given limits and maintains the Cornsweet

profiles. Figure 7.12 illustrates our local scaling in comparison to other approaches

and shows that it best preserves the Cornsweet profiles, while reproducing most of the

original contrast.
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7.6.3 Artistic enhancement

Our previously described retargeting ensures that contrast is preserved as much as

possible. Although this enhancement is relatively uniform, it might not always reflect

an artistic intentions. E.g., some depth differences between objects or particular surface

details might be considered important, while other regions are judged unimportant.

Figure 7.13 (bottom) shows an example where the distance between the two dragons

in the background has been enhanced, as well as the details in the foreground where

the dragon scales appear more detailed. It is also possible to increase the overall depth

impression in the scene by increasing disparity scaled in JNDs units (see Figure 7.11).

To give control over the enhancement, we developed a simple interface that allows

an artist to specify which scene elements should be enhanced and which ones are less

crucial to preserve. Precisely, we allow the user to specify weighting factors for the

various bands which gives an intuitive control over the frequency content. Using a

brush tool, the artist can directly draw on the scene and locally decrease or increase

the effect. By employing a context-aware brush, we can achieve ensure edge-stopping

behavior to more easily apply the modifications.

7.6.4 Backward-compatible Stereo

The need for specialized equipment is one of the main problems when distributing

stereo content. As an example, consider printing an anaglyph stereo image on paper:

the stereo impression can be enjoyed with special anaglyph glasses, but the colors are

ruined for spectators with no such glasses. Similarly, observers without shutter glasses

see a blur of two images when sharing a screen with users wearing adapted equipment.

We approach this backward-compatibility problem, in a way that is equipment and

image content independent, by employing our model.

Using our technique, we can produce backward-compatible stereo that “hides” 3D

information from observers without 3D equipment. The observation is that a zero

disparity leads to a perfectly superposed image for both eyes. Unfortunately, this

also implies that no 3D information is experienced anymore. Therefore, our goal is

to reduce disparity where possible to make both images converge towards the same

location, hereby it appears closer to a monocular image. In particular, this technique

can transform anaglyph images and makes them appear close to a monocular view.

The implementation follows the same process as for the retargeting, but we do

not add the scaled disparity. In this case, the Cornsweet profiles will create appar-

ent depth discontinuities, while the overall disparity remains low. This is naturally

achieved because Cornsweet profiles are centered around zero. The example compar-

ing our backward-compatible stereo with original 3D stereo rendering is presented in

Figure 7.14

The solution is very effective, and has other advantages. The reduction leads to less

ghosting for imperfect shutter or polarized glasses (which is often the case for cheaper

equipment). Furthermore, more details are preserved in the case of anaglyph images

because less content superposes. This is particularly visible for the grass and sky in

the foreground of Figure 7.15. Furthermore, it is important to realize that much of the

scene structure remains understandable because the HVS is capable of propagating

some of the perceived differences over the neighboring surfaces. When comparing
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Original

Original

Enhanced

Enhanced

Figure 7.13: Depth enhancement using the Cornsweet illusion. Original and enhanced

anaglyph images are shown for two different scenes with significant depth range. Note

a better separation between the foreground and background objects and a more detailed

surface structure depiction.

to an image of equivalent disparity (scaled to have the same mean), almost all depth

cues are lost. In contrast, to produce a similar relative depth perception, the disparity

can become very large in some regions even causing problems with eye convergence.

Finally, our backward-compatible approach could be used to reduce visual discomfort

for cuts in video sequences that exhibit changing disparity [Lang et al. 2010].

7.6.5 Photo Manipulation

Finally, converting 2D photos into 3D [Saxena, Chung and Ng 2005] is never perfect. To

minimize and facilitate the user interaction, we can concentrate on local discontinuities

and avoid a global depth depiction. According to our findings even a localized depth
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Common anaglyph

Backward compatible

Pos. Disp.Zero Disp.Neg. Disp.

Figure 7.14: Backward compatible stereo provides just-enough disparity cues to

perceive stereo, but minimizes visible artifacts when seen without special equipment.

Figure 7.15: Converting a photo (Left) into a 3D image (Middle, anaglyph), just by

using the blue channel as depth. Our enhancement (Right, anaglyph) can be used to

put stereo cues only where depth contrast exists, minimizing the global error due to the

naïve 3D reconstruction, but with locally plausible cues. The insets on the right depict

the corresponding disparity maps.

representations can deliver a good scene understanding (refer to Figure 7.15). This is

not surprising, as it is an observation that has been used for centuries in the form of

bas-relief depictions. In fact, again the Cornsweet profile seems to be a very effective

shape in this context.
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7.6.6 Evaluation

To evaluate the backward-compatible approach, we performed two user studies. In our

first study, ten naïve subjects participated. First, we investigated the overall quality of

our method. For this, we handed a backward-compatible stereo image with “hidden”

anaglyph content. We asked each subject for flaws or particularities in the image.

None of those that received our output reported the artifacts produced by the stereo

information within the first minute. Furthermore, only two subjects reported this

observation within two minutes. After two minutes, the subjects received anaglyph

glasses and were asked to report their observation concerning the stereo impression

of the backward-compatible stereo image and the standard 2D image shown side by

side. All 10 subjects agreed that the backward-compatible stereo image exhibits a 3D

effect whereas the standard image does not. Obviously, such results depend on the

underlying image content, but the findings give a clear indication that 3D content can

be hidden to a large extent.

The second study was conducted to measure the depth effect of our solution and

to show that it reduces disturbing artifacts when not using special equipment. To this

extent, we let six participants compare the depth percept of two stereo images, one with

our backward-compatible stereo and one with standard stereo. We then asked them to

adjust the disparity in the standard stereo image (by approaching the two cameras), such

that the depth impression was equivalent to our backward-compatible version. Such

an adjustment of camera distances is similar to performing micro-stereopsis [Siegel

and Nagata 2000]. In Figure 7.16, we show comparison of the backward-compatible

version and the average result.

7.7 Joint Luminance and Disparity Manipulations

The disparity metric presented in Section 6.4.5 can predict the perceived change of

distorted disparity, just like the effect of luminance distortions on perceived depth.

Hence, we can identify image regions, where the stereo impression is weak due to poor

luminance support. We can quantify this effect by comparing two stereo images with

the same disparity pattern but an assumed-perfect luminance pattern in one of them.

By improving the luminance contrast in areas where the original support proves

insufficient, we re-introduce the impression of depth as shown in Figure 7.17. In Fig-

ure 7.18, we also use this technique to illustrate the successful detection of asymmetries

described in Section 6.4.

We also tested whether our luminance pattern in Figure 7.17 improved depth

perception. We compared both images, i. e., with and without introduced luminance

pattern, and asked people to choose image that exhibits more depth. 16 out of 17

participants chose the solution images where the additional luminance pattern was used.

A two-sided binomial statistical test revealed that this result was statistically significant

with p < 0.05.
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Anaglyph glasses Polarized glasses

Micro-stereopsis

Micro-stereopsis Micro-stereopsis Micro-stereopsis

 glasses

Figure 7.16: The figure presents a comparison between the backward-compatible

stereo and the micro-stereopsis technique. The second method was adjusted in a way

that both versions exhibit the same depth impression. The insets present zoomed-in

versions of images displayed using differed stereo equipment. It can be seen that

although the depth impression in both cases is very similar, the backward-compatible

version reveals less disturbing artifacts while watched without stereo equipment. This

is well visible especially for areas without depth discontinuities such as body of the

bunny (notice in particular the shadows), or inside the tree (“Big Buck Bunny” c© by

Blender Foundation)

7.8 Hybrid Images

Hybrid images change interpretation as a function of viewing distance [Oliva, Torralba

and Schyns 2006]. They are created, by decomposing the luminance of two pictures into

low and high spatial frequencies and mutually swapping them. The same procedure can

be applied to stereo images by using our disparity band-decomposition and perceptual

scaling (Figure 7.19).
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Figure 7.17: An insufficient luminance support in the original stereo image (left),
lowers its depth perception (top right). By adding a hatching pattern, guided by our

metric, the resulting stereo image (middle) shows significantly less stereo loss (bottom

right).

foreground background

Disparity loss

foreground

background

Figure 7.18: To illustrate the prediction of asymmetries, we show two cases: hatch-

ing on the foreground (left) and the background (middle). Compared to foreground

hatching (right top), background hatching creates more pronounced differences due to

disocclusions, leading to better depth perception (right bottom), as correctly predicted

by our metric.

7.9 Conclusions

In this chapter, we proposed a number of perceptually-motivated disparity manipulation

techniques, which are based on the disparity models described before (Chapter 6).

By using them, it is possible to improve existing, but also develop new compelling

applications, such as an image optimization for multi-view autostereoscopic displays,

backward-compatible stereo, personalization or joint luminance-disparity processing.

Those techniques demonstrate that even simple operations, can be enhanced when

human perception is taken into account.

While modern rendering effects (depth of field, lens flare, motion blur, veiling glare,

participating media, as well as poor visibility conditions – rain, night, ...) increase

realism or artistic/aesthetic value, they also affect luminance contrast, which in turn

influences the disparity perception. With techniques presented in this chapter, for the

first time, an adequate disparity handling becomes possible in all these situations. The

disparity optimization method is a good alternative to previous methods for disparity-

range control. It was shown that considering luminance significantly improves the

results of the proposed mapping technique.
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Figure 7.19: A hybrid stereo images: nearby, it shows the Buddha; from far away, the

Grog model.

Especially interesting for perceptually driven manipulations is to use the Consweet

Illusion. We showed that it is a practical tool for depth impression enhancement and that

the possibility of Corsnweet profiles cascading enables a good backward-compatible

stereo. One limitation is that, similarly to the Cornsweet Illusion in luminance, the

manipulation might change the appearance of the shape or even material to some

extent. On the other hand, we do not manipulate colors in the rendered image itself,

which means that we preserve many of the original cues (lighting, material) that are

particularly helpful in conveying a satisfactory overall appearance. This is particularly

visible in complex stimuli (Figure 7.16) where the spatial layout is convincingly

captured without introducing large disparities. These properties make backward-

compatible stereo an interesting trade-off.

The solutions presented here are general in the sense that they do not depend on

the way the input images were captured, be it 3D rendering, a depth camera, or a

multi-view surface reconstruction. Further our techniques are independent of the 3D

display technology used to present the stereo color image pair. All the manipulations

can be also performed at interactive framerates. Because all operations are realizable

on a GPU and are applied to textures, the solution performs almost independently of

the geometric complexity of the scene and could be potentially implemented as a small

computational unit in TV-sets.

There are many interesting avenues for future research. In our work, we did

not show how all of our disparity manipulations perform with both our metrics, i. e.,

with/without luminance taken into account. In particular, it would be interesting to

investigate how apparent stereo manipulations can benefit from the luminance-disparity

model.

Not all stereo cues are equally important for all distances, thus, other stereo cues

could be enhanced, when disparity becomes ineffective. For example, warm-cold

shading might distort colors, but helps in conveying spatial organization. Similarly,

motion parallax becomes a strong depth cue at certain distances. In fact, generating

exactly those stereo cues that are actually used for a certain depth, while minimizing

their distorting effect, would allow to improve rendering performance and maximize the

perceptual effectiveness. Disparity enhancement methods could be improved by taking

into account some inabilities of the HVS, which can be detected using our disparity
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models. Similar idea was previously used in the context of brightness enhancement

[Didyk et al., 2008], where human inability to perceive details in bright regions was

exploit.

We believe that in the future, models such as ours will be crucial for stereo images

and video processing. Many other applications are possible; combined tone and

disparity remapping for HDR stereo content, or luminance hatching could be combined

with other styles of non-photorealistic rendering. We also believe that our models

could be integrated in a 3D video-conference system, as, especially in architectural

environments, regions with weak luminance variations are common. Further, our way

of optimizing 3D content could be used to consider different viewing conditions or

even viewers.



8
Stereo Upsampling

Figure 8.1: Stereo image created using our techniques, which uses adaptive grid for

artifact-free warping.

As pointed out in Section 3.1.3, although stereo vision has received recently

much attention due to its broad success in feature films, visualization and interactive

applications such as computer games, it does not come for free and often implies that

two images need to be rendered instead of a single one, as for standard rendering. This

can have a high impact on performance which is an issue for real-time applications.

Therefore, it becomes a good idea to use image-based techniques to lower the cost

of producing two views. Such techniques play also an important role in disparity

manipulations as those presented in Chapter 7, where the adjusted disparity does not

correspond to the actual depth of the scene. Therefore, recapturing or re-rendering the

scene with the new depth is impossible and image-based techniques are necessary to

resynthesize new views.

8.1 Overview

In this chapter, we propose to create only a single view of the scene, together with

its depth buffer and use image-based techniques to generate two individual images

for the left and the right eye. The resulting stereo effect is of a high quality, but our

121
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Color image / Depth image Disparity

Warped image Stereo image

1 2 3

4 5 6

Figure 8.2: Our image-based stereo view synthesis pipeline: We assume a rendered

image with depth buffer, as well as a disparity map as the input of our method (1). If

desired, the disparity map can be computed from the input depth image (2). Next, we

build a warp field of this disparity mapping (3). This field is discretized adaptively:

Areas with similar disparity are warped as large blocks, areas of different disparity are

warped as small blocks (4). Finally, the input image and the new warped image (5) are

used as a stereo image pair (6), here, presented in anaglyph stereo.

approach avoids the cost of rendering two individual frames. In this context, we address

two major challenges. First, our stereo view-synthesis should show a performance

behavior that approaches the rendering time for a single view. Second, the stereo

image pair should have as few artifacts as possible. Our solution addresses both

issues via an adaptive algorithm that respects depth disparity, exploits temporal and

spatial consistency, and maps well to the GPU. This method is an extension of our

temporal upsampling presented in Chapter 4, however, here, we present a number of

improvements that target directly stereo-image synthesis.

This chapter is structured as follows. We first propose our algorithm in Section 8.2.

Then we present results in Section 8.3. Strengths and limitations are discussed in

Section 8.4, before we conclude in Section 8.5.

8.2 Our Approach

In this section, we propose a pipeline (Section 8.2.2) to turn a rendered image with

depth into a stereo image pair as shown in Figure 8.1. To this end, we first show how a
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pixel disparity mapping (Section 8.2.1) from an image location in one eye to the image

location of the other eye can be computed for rendered content. We observe that this

mapping is piecewise smooth, and exploit this fact to efficiently create a high-quality

stereo image pair using an adaptive approach (Section 8.2.3). Finally, we discuss

how to improve the result further by warping not only between the left and right eye,

but also between the current and previous frames (Section 8.2.5). In particular, this

modification also ensures convergence (Section 8.2.6) to the reference in the case of a

static scenes and a decelerating camera.

8.2.1 Pixel Disparity Mapping

Let y ∈ R
3 be a point in world space and xleft ∈ R

2 its projection into the left eye’s

view as well as xright ∈ R
2 it’s projection into the right eye’s view. For the purpose of

this section, we call the mapping f : R2 → R
2 which maps every left image position

xleft to its right image position xright the the pixel disparity mapping from left to right.

Further, we simply call the distance ‖xleft −xright‖ ∈ R
+ the pixel disparity of y. This

definition is analogous to the definition given in Section 2.3.2.

Given a depth map, the simplest method to generate a pixel disparity map is to

apply a scale and bias to all values. In the case of a rendered scene, the depth can be

directly output by the GPU, but our method does not rely on this particular feature

and would support alternatively determined depth/disparity. We use a simple fragment

program that applies a scale and bias to the depth in order to derive a disparity map. We

adjusted our results in such a way, that both negative and positive parallax is present,

as preferred by most viewers.

8.2.2 Pipeline

Our basic approach follows the pipeline depicted in Figure 8.2. In order to facilitate the

explanations, we will focus on how to produce a right image out of a given left image.

Later in Section 8.2.6, we will extend this setting. We assume that the pixel disparity

mapping f is an input to this process and use it to convert a single image with depth

information Ileft(x), into a pair of stereo images Ileft(x) and Iright(x) = Ileft( f (x)).

Simply applying f in a pixel-wise fashion as done in previous approaches Sec-

tion 3.1.3, can lead to holes and is not efficient to compute on a GPU, as it involves

data scattering. Therefore, we represent f as a quad grid, i. e., a mapping from areas

to areas instead of points to points. By doing so, we avoid holes and allow a parallel

computation based on reverse reprojection (gathering) instead of forward reprojection

(scattering) (Section 3.1.2), which is preferred for GPUs. To this end, we follow

approach described in Chapter 4: We start with a regular grid much coarser than the

screen resolution and sample f at every vertex, we then warp this grid as textured

quads into Iright and use Ileft as a texture. While a grid-based approach avoids many

holes, special considerations are required for the case of occlusions and discoclusions.

Occlusions occur when multiple locations x in Ileft map to the same location in

Iright. This happens for example, when a nearby object with a strong disparity covers

a background object with low disparity in Iright. Indeed f might not have a unique

inverse for some locations. However, such ambiguities can be resolved completely by
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using the depth information from Ileft(x): Whenever a pixel is written to Iright(x), we

compare its depth to the depth in Iright(x) and omit the writing if its depth is bigger.

In practice, this can be achieved using standard GPU depth buffering similarly to our

temporal upsampling technique.

Contrary to occlusions, disocclusions lead to holes because the originally hidden

information is missing, but needed. Using the described grid warping, such holes are

essentially filled with content from the input image by stretching the grid. A better

solution, using multiple-image warping, is discussed in Section 8.2.5.

8.2.3 Adaptive Grid

While the described so far approach succeeds in producing stereo image pairs (Sec-

tion 8.3), it has two main drawbacks. First, if the image has many details in depth, a

regular, coarse grid representation of f leads to undersampling and aliasing problems,

i. e., low quality (Figure 8.8). Second, just increasing the grid resolution (or keeping

any fixed resolution), wastes an excessive amount of grid vertices in areas which are

essentially simple to warp using a low number of vertices, i. e., achieving low per-

formance. We will now alleviate these two shortcomings by introducing an adaptive

discretization of f .

As f is smooth over large areas, except at a few discontinuities, we construct a grid

that adapts to the structure of f . We start from an initially regular grid (in practice,

we start with a 32×32 grid to achieve enough parallelism, in theory one could start

with 1×1 as well). The grid’s quads are stored as a list of quad centers in an OpenGL

vertex buffer object. A geometry shader traverses all these quads in parallel, and either

Figure 8.3: Multiple quads (horizontal) subdivided in parallel using multiple steps

(vertical). In every step, every thread produces either a single quad (1-to-1, blue) or

four (1-to-4, red) new quads. In the next step, each quad is again processed in parallel.

We repeat this until quads are pixel-sized.

outputs the same quad/center again, or refines this quad into four new quads/centers

(Figure 8.3). This process is iterated until all quads are sufficiently refined and the

structure well reflects the discontinuities in f .

The decision whether a subdivision should be applied is based on the difference

between minimal and maximal disparity inside the quad. If this difference is larger
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than some threshold four subquads are produced, otherwise the quad is left unchanged.

The output is captured in a second vertex buffer object using the OpenGL transform

feedback extension. This subdivision process is iterated until the level 0 of 1×1-pixel-

sized quads is reached in the regions where needed (hence, the number of steps depends

logarithmically on the resolution of the input frame).

An alternative approach would be to directly refine a quad to many subquads,

without recursion and without transform feedback. This leads to strongly varying

output sizes (between one and several hundred vertices) which is not recommend for

the geometry shader. Distributing the work amongst as-many-as-possible new threads

after each subdivision is the preferred approach and allows for much more parallelism

[Meyer et al. 2009].

Finally, when the subdivision is finished, we transform the vertex buffer object

(VBO) quad centers back into a grid. For this, we use a second geometry shader that

consumes quad centers and produces quads. f is evaluated for each corner of a quad,

and each quad is drawn to Iright using Ileft as a texture, as described in the previous

Section 8.2.2.

In order to avoid holes when disocclusions occur, it is important to realize that the

grid vertices always fall on locations between two pixels (i. e. at level 0, a 1×1 quad

maps to the corner of a pixel). We select the preferred pixel to fetch f and Ileft based on

its depth. That is, we fetch all four adjacent pixels around a vertex in Ileft and use depth

and disparity from the pixel with the smallest depth. By doing so, vertices adjacent to

disocclusions effectively stretch the background avoiding holes.

8.2.4 Implementation Details

The position and level information for each quad is packed into an 8-bit RGB texture

(10+10-bit position, 4-bit level).

To efficiently bound the amount of difference between minimal and maximal

disparity inside a quad we use a min/max MIP-map. This map is similar to a common

MIP-map, alas instead of storing the average, it stores the minimum and the maximum

of all pixels below a pixel on higher levels. Such a map can efficiently be constructed in

a parallel recursive fashion. Starting from level 0 at full resolution, a fragment program

visits every pixel of the next-lower level and stores the minimum and the maximum

of the four pixels from the lower level. This process is repeated until arriving at a

single-pixel image, which, in our case, would store the minimum and maximum of all

disparity values.

We set the subdivision threshold to 3 pixels which basically leaves only a low

number of spurious single-pixel holes due to T-junctions, which occur if one quad is

neighbor to a quad that is subdivided more. While a T-junction removal method could

fix such problems, it usually generates again a higher and varying number of output

vertices form the geometry shader. Doing so would significantly lower the geometry

shader throughput, which is the bottleneck in our computation. We found the most

efficient and simplest solution is, to just fill the undefined pixel via inpainting. In

practice one can chose a random neighbor pixel in image space (Figure 8.4).
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Before hole filling After hole filling

Figure 8.4: We stop subdividing before reaching a pixel exact result (left) and fill

the few remaining holes (right). Note, that this is an inset and pixel-sized holes are

proportionally much smaller in multi-megapixel images.

8.2.5 Using multiple images

Changing from a regular grid to an adaptive grid results in speed and quality improve-

ments. Disocclusions remain the only visible artifact. By stretching the grid quads, the

artifacts become less visible, but they can be perceived in certain configurations.

While disocclusions can ultimately not be solved without re-rendering, in this

section, we will discuss how to use multiple images and multiple mappings to produce

an improved stereo image pair.

We will use a previously rendered image Iold together with a mapping g which

maps from the past view into the current view of the same eye (Figure 8.5). While

f was defined to be a pixel disparity mapping, g is not. Nonetheless, it is a mapping

from R
2 to R

2 as well. g is also constructed rapidly via a fragment program which is

executed on all depth-buffer pixels in parallel. These are unprojected from the old view

and re-projected into the new view. The resulting 2D displacement is stored. As for f ,

g is not defined everywhere, for example if a location in the current frame was clipped

in the previous frame.

We can now produce an alternative right stereo image Iright(x) = Iold(g(x)). Iold

should be used whenever a disocclusion is present. To get the best result of both we

carefully choose between the two sources. In practice, we use the stretching difference

inside a quad: If a quad undergoes varying stretching, it is likely to cause a disocclusion

(it “tears up” the space) and should therefore not be used. Precisely, we use a preference
operator w, arriving at

Iright(x) =
w( f )(x) · Ileft( f (x))+w(g)(x) · Iold(g(x))

w( f )(x)+g( f )(x)
,

with

w(h)(x) : (R2 → R
2)→ (R2 → R).

The operator w turns the (disparity) mapping h into a spatially varying preference for

that mapping.

Although there is no guarantee, that all occlusions will be resolved. This strategy

performs rather well because a disocclusion in one mapping will often not be a dis-
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Figure 8.5: Using multiple images to reduce disocclusions and improve quality.

Consider the two eyes (red and cyan circle) of a moving observer in a virtual world

(arrow). Ground truth would produce two images in each frame. Instead, we produce

one frame only (green), warp (magenta) from the past and the other eye, and merge

(yellow) according to the one with the lower error. To achieve convergence when

slowing down or halting, we alternate the rendered and the synthesized image.

occlusion in another. Following the same strategy, we can also avoid the T-junction

holes nearly completely. Only such holes that are present in both images remain

holes, which is never the case in practice when relying on a three pixel threshold in a

multi-megapixel image.

8.2.6 Convergence

One final step can further improve the result: Instead of always rendering the left eye

view and creating a right eye view, we can swap the eye roles and either warp from

left to right or right to left. Swapping eyes in every frame does not lead to a strong

improvement as long as the viewer is moving, nonetheless, also no temporal artifacts

are introduced. However, already in this setting, if the speed of the motion decreases, w
will prefer the past image, and ultimately, when no animation is present, w will always

pick the past right eye for the current right eye and the past left eye for the current left

eye, i. e. the result converges to the static reference.

In order to further improve the quality in the case the camera is moving, instead of

toggling, it is best to choose the most distant eye view from the previously rendered. In

such a way we minimize the potential disocclusion. In order to visualize the advantage

of this choice, one can imagine a constant panning movement. If the left eye always
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falls on the old position of the right eye, a toggling would be harmful, as it would lead

to the same view being rendered twice. Choosing the most distance view eases the

handling of disocclusion. In this particular case, in combination with the operator w,

our algorithm even produces the reference result, although the camera is no longer

static.

8.3 Results

In this section we evaluate quality and performance of our approach. We used an

NVIDIA Quadro FX 5800.

To test our approach, we have chosen mostly architectural models because they

represent an excellent stress test with many occlusions, disocclusions and fine details.

All models are rendered using shadow mapping, per-pixel deferred shading, fog, depth

of field and screen-space ambient occlusion. With such a set-up it takes around 40 ms

to produce a frame. We excluded the computation of the disparity from all timings as

we assume it to be an input of our method.

We compare our method to three other approaches. First, straightforward mapping

of a 1× 1 grid, including handling of occlusions in the same way as the method

presented here does. This approach is our reference solution in terms of speed. Using

our method by morphing only one image we can only approach the quality of such

solution. An improvement is possible using more views as described in Section 8.2.5.

Second, we show that our method produces better results in terms of speed and quality

than using pixel-wise re-projection. We also compare our method to approach presented

in Chapter 4 to which we refer as “Simple Grid”. This method although targets

temporal upsampling, can be used directly for producing stereo images (Section 4.4.3).

It is significantly faster than the reference approach, but has lower quality. We will

substantially improve upon this method in terms of quality, and in some cases even in

terms of speed.

8.3.1 Quality and Performance

To show the importance of using an adaptive approach we compared our one view

morphing method to the naïve, reference solution. Although we cannot improve the

quality, we can bound an error by setting the subdivision threshold properly. Doing so,

the solutions of both methods become indistinguishable but due to the adaptivity, our

solution is several times faster.

In Figure 8.8 we compare the performance and the quality of our approaches as

well as method from Chapter 4 (“Simple Grid”) to ground truth rendering. First, we

see how our approach speeds up the process of producing stereo content compared

to rendering two frames. On average, for all scenes used for our experiments, the

morphing of one frame in resolution 2048× 1024 takes around 7 ms.

Second, our method achieves quality similar to the ground truth, while “Simple

Grid” approach falls short in doing so for complex details (spikes, ghosting). In

particular, when comparing to the trivial approach (Figure 8.9) of mapping individual

pixels and filling the holes using pull-push, the quality is worse and the performance
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Figure 8.6: Decreasing (resp. increasing) the threshold generates a higher (resp.

lower) grid resolution, therefore lower (resp. higher) speed but also higher (resp. lower)

quality.

is three times lower. This is easy to see, as warping a grid of vertices which form a

small subset of all pixels in the image is obviously faster than warping all pixels. This

performance difference underlines the importance of supporting modern fine grained

parallelism (i. e. gathering) over straightforward approaches which require scattering.

Third, we see how the use of multiple images avoids disocclusions and improves the

quality by comparing the two rightmost columns. This is most visible for the “Antenna”

scene in the second row, where the thin features are stretched across disocclusions

when using only a single image. As our approach is orthogonal to the used surface

representation, we can apply our technique also directly to iso-surface ray-casting

[Levoy 1988] (last row).

8.3.2 Adaptation Quality

Further, we seek to illustrate the influence of the subdivision threshold by keeping all

parameters fixed and varying only this threshold. In Figure 8.6, we show high, medium

and low-quality thresholds, the respective subdivision, as well as some details that

represent typical problems also encountered with a trivial approach (Figure 8.9).

8.3.3 Analysis

In Figure 8.7, the variation of performance over time for the reference, “Simple Grid”

and the new method is plotted for the “Crane” scene. We see, how the new method has

varying efficiency over time. This is because the adaptation creates a varying number

of quads in our grid. However, it is almost never slower than previous work, at much

higher quality, as discussed in the previous paragraph. Tighter bounding of this time

interval is desirable in interactive applications such as games and remains future work.
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Figure 8.7: Variation of performance over time for several different strategies. Al-

though our performance varies due to the adaptivity, it is nearly as high as for method

designed for temporal upsampling but at a quality comparable to the reference solution.

8.4 Discussion

Similar to many other upsampling methods (e. g., the one presented in Chapter 4)

this approach is limited to non-transparent surfaces. We do not account for view

dependent-effects such as specular highlights.

The improvement when using previous frames (Section 8.2.5) depends on the

camera path. In case of camera movement in the plane to which the eye axis is normal,

no additional information is won, but such movements are less likely than e. g., human

walking animations. Put in another way, human eyes are placed horizontal to each

other and not vertically because of the movements performed by humans [Ross 1974].

In future work, more advanced view selection techniques are worth investigating.

Lacking a suitable output device, we were not able to test our method for generating

more than two views out of one. However, the time-benefit of image-based upsampling

would be even more pronounced. Also, we envision upsampling in time as well as in

stereo and other image-based re-use e. g., for anti-aliasing or motion blur.

8.5 Conclusions

In this chapter, we described an approach to upsample a stream of monocular images

with depth information to a stereo-image streams, exploiting modern GPUs and human

perception. We demonstrated its application to a number of problems, in which the

approach drastically reduces the rendering time compared to rendering an image pair.

The approach is independent of the underlying surface representation and can be

easily integrated into existing software as a post-process to deliver high-quality stereo-

image pairs. Recently, our approach has been improved by Bowles et al. [2012], also

mentioned in Section 4.5.

In future work we would like to address stereo view synthesis of images with

transparent surfaces, such as volume rendering with full transfer functions, or clouds

and steam in interactive applications such as games. Besides technical improvements
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Figure 8.8: Results produced by our algorithm (Left) for different scenes in resolution

2048× 1024, presented in anaglyph stereo. On the right, we show scene details

computed using four different approaches: Ground truth; “Simple Grid” method; Ours

using only single images; Ours using multiple images. We achieve similar quality to

ground truth at a performance similar to “Simple Grid” method (see the fps insets).

to produce stereo, many questions of stereo perception and stereo content control are

not yet answered, including the depiction of specularities and transparency as well as

the disagreement of lens accommodation and other stereo cues or how depth of field

and stereo should be combined. In this contexts, recently in [Templin et al., 2012], a

new method for specular highlights rendering was presented. Instead of reproducing

highlights as they would be captured by a two-camera setup, we proposed to render all

reflections with small disparities (so-called microdisparities). This improves comfort

comparing to a physically-correct rendering and enhances material depiction compar-

ing to highlights located at the depth of objects. In order to render highlights with

microdisparities an image-based warping technique is required. For this purpose the
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Figure 8.9: Using pixel-wise re-projection (trivial approach, below-reference) results

in many holes, that have to be filled using pull-push which leads to blur. At the same

time, the performance is approximately three times lower than for our approach.

technique proposed in this chapter could be used.

In the future, we plan to exploit the fact that humans have a dominant and a

recessive eye which allows for lowering the quality of the left or the right image

without introducing visible artifacts [Stelmach, Tam and Meegan 1999]. One could

display a perfect rendering for the dominant eye and a warped (maybe even blurred)

imperfect rendering for the recessive eye, which would further improve efficiency of

stereo image computation.
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Summary

In this part, we summarize all contributions that are presented in this dissertation and

propose directions for future work.

9.1 Conclusions

The continuous demand for faithfully reproducing the real world and for great visual

sensation, has forced computer graphics researchers, artists, display and capture-device

manufacturers to constantly improve their techniques and products. The role of today’s

cinema, television, video games or visualization techniques is not only to illustrate but

also to immerse the viewer into a crafted or captured world. Although it may seem that

mostly entertainment applications benefit from the advances, realistic and convincing

content presentation finds great exploitation in fields such as medical imaging or

product design. In this dissertation, we concentrated on display devices whose quality

is of high importance to today’s visualization techniques.

Usually, the improvement of display devices is achieved by the means of better

or new hardware designs. However, as shown in this dissertation, the quality of

reproduced content should be always considered in the context of perceived quality,

hence, it is important to take properties of the HVS into account. In the end, the result

is not what one can reproduce on screen but rather the mental image created by the

human brain. Therefore, instead of considering new display designs, we explicitly

employed perceptual effects to improve the quality of display devices, often beyond

their physical capabilities. By capitalizing on various aspects of the human visual

system, display qualities have, at least perceptually, been significantly enhanced in

a stable and persistent way. Similar enhancements could often only be achieved

by improving physical parameters of displays, which might be impossible without

fundamental design changes in the existing display technology and clearly may lead

to an overall higher display cost. Instead, we studied apparent improvements that are

enabled by properties of the HVS.

Most of the here-presented techniques achieve their goals by means of relatively

simple image processing operations, which often rely on skillful signal manipulation.

We interleaved frames in the temporal domain and combined high-quality sharpened

and low-quality blurred frames on high-refresh rate displays to reduce the perceptual

hold-type blur and to improve apparent motion smoothness. Also, we reduced rendering

cost as blurred low-quality images are derived from high-quality images without

causing any perceivable quality degradation. Similar in spirit, the principles of temporal

133
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signal integration in the retina can be used to enhance apparent resolution, where high

frequency information that cannot be shown directly on screen is included in many

consecutive frames in form of aliasing which later canceled by the HVS produces

impression of looking at higher resolution content. More complex, but implemented

as simple image processing operations, disparity models allow for a prediction of

disparity perception and effective disparity and luminance-disparity manipulations

control become possible. Finally, the Cornsweet gradient profile inserted across depth

discontinuities can enhance perceived depth. Hereby, we can produce stereo images

that look ordinary when viewed without glasses but create a stereo impression when

special equipment is used. The simplicity of these techniques makes them very efficient

but can also be integrated within the display panels of the future, in form of small

computational units, which would be an interesting alternative to standard hardware

solutions.

In this dissertation, we successfully showed that taking into account human per-

ception during display stage can indeed improve perceived quality significantly. Our

techniques considered only a few properties of HVS leaving many of them still not

explored in this context. Therefore, we believe, that further research taking into account

other aspects of human vision as well as new display designs will lead not only to new

software techniques for perceived quality enhancement but also to new display designs.

9.2 Future Work

We believe that the idea of exploiting properties of the HVS in the context of image

quality enhancement is appealing and will stimulate other researchers to pursue further

investigations and there are many directions for future work. Here, we list a few of

them.

In our work quality dimensions were considered mostly separately. In the future

work, interactions between them could be investigated and possible advantages of their

interplay could be used for further improvements. With our joint luminance-disparity

manipulation, where we investigated how luminance contrast can enhance perceived

depth, we made a first step in this direction. Interestingly, their relationship is mutual

and disparity can also enhance the luminance-contrast perception. Hence, we could

find a good balance between visible luminance contrast and disparity, when processing

them simultaneously. Similarly, interactions of qualities, such as brightness, contrast,

spatial or temporal resolution with depth might be promising. The main observation

here is that the HVS tolerates differences between left and right views to some extent.

In the same spirit, as we split high frequency information among many consecutive

frames in our apparent resolution enhancement method, one could think of splitting

information between the left and right views. Such an approach could be beneficial

not only in the context of resolution enhancement but also for high dynamic range

imaging.

In the future, considering not only different quality dimensions but also different

modalities could bring a significant improvement of the viewing experience. However,

so far, not much research exists in this direction. For example, it is possible that audio

has a big influence on the human depth sensation. A skillful audio signal adjustment

could potentially be used to compensate for current 3D stereo display limitations, where

the allowed depth range is to a great extent limited by the accommodation-vergence
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conflict.

In this dissertation, we focused on techniques that do not attempt to modify current

displays designs. Instead, we provided software solutions for off-the-shelf displays,

which can achieve apparent quality enhancements. However, we believe that making a

step back and considering display design under the light of the contributions in this

dissertation may result in new and better solutions. An interesting technique has been

recently proposed by Berthouzoz and Fattal [2012]. Instead of moving images in

order to enhance perceived resolution as we proposed, the authors introduce a periodic

movement of a display device. Hereby the perceived resolution is increased using a

similar approach to ours for static content.

Apart from combining our techniques with hardware development one can consider

designing new software techniques that would take advantage of the data provided by

additional devices. For instance, eye trackers, which receive an increasing amount of

attention. These can provide not only 2D information about the point of gaze in the

display plane, but also the exact vergence location in 3D space. Such information can

potentially be used to improve viewing comfort in the context of 3D stereo displays or

it could serve as an additional information for our resolution enhancement or temporal

upsampling techniques which currently assume that the observer closely follows the

movement of dynamic objects on the screen.

Furthermore, we proposed techniques that use display features for different purpose

than what they were initially designed for. For example, we used high-framerate

displays that were primarily designed for low-cost 3D stereo and showed that by taking

advantage of the framerate, an apparent resolution enhancement can be achieved. This

matches the current trend of computational display techniques, which, by analogy to

computational photography, modify standard display devices or provide additional

software in order to achieve new functionalities. This is a very appealing concept

for future customers who will be able to extend the functionality of new displays

according to their needs. For example, one could consider new uses of multi-view

autostereoscopic displays. Instead of reproducing 3D stereo and parallax, such displays

could be potentially used for better material reproduction.

Material reproduction is on its own an exiting direction for the future work, which

recently started getting much attention. People do not only consider displaying different

materials with spatially varying properties but they also fabricate them using modern

3D printers. It is, however, still a tedious task to reproduce materials that exhibit

properties that closely match the real world exemplars. The biggest problem is the

curse of dimensionality. The HVS judges material appearance based on many factors

such as brightness, illumination, 3D information, and different views. Understanding

how this information is combined might be crucial for a faithful material reproduction.
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